
 1

LANSA OPEN FOR .NET 3.8
QUICK START GUIDE

What is LANSA Open for .NET 3.8? ... 3

Why LANSA Open for .NET 3.8? .. 4

What Will a Simple C# Code to Retrieve and Update an Employee Record Look Like? 4

How is Coding Made Easier with LANSA Open for .NET 3.8? ... 4

What Doesn’t LANSA Open for .NET 3.8 Do?.. 6

Runtime Requirements ... 6

Supported Visual Studio Versions .. 6

Installing LANSA Open for .NET .. 6

Components of LANSA Open for .NET ... 7

Is Visual Studio Express Supported? .. 7

A Glimpse of LANSA Repository Explorer and Data Model Editor .. 9

Why Do We Have the Standalone Version of the Data Model Editor? ... 10

What Does the Visual Studio Integrated Version Do That the Standalone Version Does Not? 10

How Do I Start the LANSA Repository Explorer in Visual Studio? ... 11

LANSA Repository Explorer ... 12

How Do I Create a New LANSA Data Model File In My Project? ... 14

Can We Add A Data Model (.lcm) to an ASP.NET Web Site? .. 15

Can I Add a Data Model File to Any Project (Languages)? ... 15

What If I’m Not Using C# or VB.NET? ... 16

What Do I Do with the Data Model and How Can I Reference It from My Code? .. 16

Enabling Commitment Control on the Server .. 18

Synchronising Objects on the Data Model with the LANSA Repository.. 18

What LANSA Open for .NET Assemblies I need to include when deploying my application? 19

Establishing a Connection with a LANSA Server .. 19

Creating a Master Context .. 19

Creating a Child Context ... 20

Retrieving Records ... 20

Submitting Changes Back to the Server ... 21

Inserting a New Record to a Table .. 21

Populating Default values of Fields in a Data Object ... 22

Deleting a Record .. 22

Checking the State of a Data Object .. 22

Submitting Changes to the Server, Catch and Display Messages when Errors Occur 23

Submitting Changes to the Server & Resolving Update-conflict ... 24

Getting the Server to Validate the Changes Made to Records Without Actually Committing the Changes 25

 2

Real & Virtual Table Columns .. 26

Accessing a Column’s Multilingual Texts (Labels, Headings) .. 26

Deleting Multiple Records ... 27

Updating Multiple Records .. 27

Beginning & Ending a Transaction ... 27

How Do the LANSA Field Types Map to .NET Runtime Types? ... 28

Data Context Advanced Options .. 29

How to Assign a Database NULL Value to a Column in a Record? .. 35

Accessing Original Values in a Data Object .. 35

Getting Error Information From ApplyChangesException ... 36

Handling Locking of Row before Update .. 37

Serializing a Context ... 38

Serializing Data Objects in a Context ... 39

Turning On LANSA Connection Pooling .. 40

DataContext Serialisation & Deserialisation .. 41

Context’s Embedded Dataset .. 44

Creating a Server Function Definition in the Data Model ... 45

Invoking a Server Function ... 48

Invoking a Server Function with List Parameters .. 49

Using IBM i Spool File Collections .. 49

Using IBM i Operating System Command ... 50

 3

What is LANSA Open for .NET 3.8?

LANSA Open for .NET 3.8 is a LANSA Development Environment for .NET that is integrated with Microsoft

Visual Studio.

• It allows .NET applications to easily make use of the objects in a LANSA Repository (tables, functions,

validation rules, multilingual texts) in an object-based manner.

• It does not however allow the creation and modification of objects in a LANSA Repository.

.NET developers typically create a LANSA data model which specifies which LANSA objects they want to

make accessible from their .NET code. The LANSA data model file will be part of their C# or VB.NET projects

and behind the scenes LANSA Open for .NET (integrated into Visual Studio) will automatically create the classes

and methods that represent the objects in this model, which are immediately available for use from any .NET

code.

 LANSA Open for .NET 3.8 consists of 2 main components:

• LANSA Repository Explorer

The Repository Explorer allows .NET developers to connect to a LANSA repository on a remote server

and inspect the objects defined in the repository and view/edit content of tables.

• LANSA Data Model Editor

The Data Model Editor allows .NET developers to visually construct a LANSA data model (LANSA tables,

server functions, etc) for their application. This is done by dragging LANSA objects from the Repository

Explorer and dropping them on the editor. When saved this visual representation of the data model will

be transformed automatically into .NET classes and methods (behind the scenes) and will be readily

available for use by the .NET developers. This in conjunction with Visual Studio IntelliSense makes

programming with LANSA objects much simpler and less prone to mistakes.

 4

Why LANSA Open for .NET 3.8?

• Eliminates the need for .NET developers to use Visual LANSA, something they are not familiar with and will

require a considerable amount of time to get used to.

• It provides a programming model that .NET developers are familiar with.

• Effective collaboration between LANSA developers and .NET developers:

o LANSA developers create a data model using standalone LANSA data model editor.

o The data model will be passed to the .NET developers, which instantly allows the .NET developers

to easily access the defined LANSA objects from their .NET code.

What Will a Simple C# Code to Retrieve and Update an Employee Record Look

Like?

To give you a feeling of what you can expect from LANSA Open for .NET 3.8, here is a very simple example of

the usage of the data model after it is designed and saved. You don’t have to fully understand the code and

what it does, this is just to give you a taste of coding with LANSA Open for .NET 3.8. The classes and

properties such as Employee, FirstName, EmployeeCols are automatically generated for you behind the

scenes from the data model.

// Create a LANSA data context - this is always the starting point

DataContext context = new DataContext(true);

// Retrieving all fields of an employee with key field EMPNO = "A0070"

Employee employee = context.Employees.RetrieveItem("A0070");

Console.WriteLine(employee.FirstName);

Console.WriteLine(employee.Surname);

// Updating the name & salary of the employee

employee.FirstName = "Andrew";

employee.Salary += 10000;

// Commit the changes to the LANSA database

context.SubmitChanges();

// Retrieving all employees with salary bigger than 50,000

Employee[] list1 = context.Employees.RetrieveList(EmployeeCols.Salary > 50000);

// Retrieving only Employee Number and first name fields of all employees

Employee[] list2 = context.Employees.RetrieveList(EmployeeCols.EmpNo +

EmployeeCols.FirstName);

How is Coding Made Easier with LANSA Open for .NET 3.8?

• IntelliSense lets the programmers know what fields are available in a table & what operations can be

performed.

 5

• IntelliSense can quickly show the programmers what they can and can’t do.

In this screenshot below, it shows that EmployeeNo is one of the keys in the table and we can find an

employee with a certain EmployeeNo.

• When you are trying to do something that is invalid, the compiler will alert you so that you don’t have to

wait until you run your program to find out that you’ve done something wrong.

 6

What Doesn’t LANSA Open for .NET 3.8 Do?

It does not deal with UI / form design. So you can’t just drag a field from the repository onto a form and expect

a default visualization of the field to be created automatically for you as in Visual LANSA.

Runtime Requirements

.NET Framework 4.0

Supported Visual Studio Versions

• Visual Studio 2010

• Visual Studio 2012

• Visual Studio 2013

• Visual Studio 2015

Installing LANSA Open for .NET

Run the LansaNETInstaller.msi

 7

Components of LANSA Open for .NET

There are two versions of the two tools mentioned earlier (LANSA Repository Explorer and Data Model Editor):

1. Integrated with Visual Studio

2. Standalone application

The two versions are exactly the same in terms of functionality (there are some minor differences related to

how the data model can be used in the code which will be discussed in the next section). The next section will

discuss the circumstances in which the standalone version is necessary or preferable to the Visual Studio

integrated version.

Is Visual Studio Express Supported?

No, however it does not mean that you cannot develop with LANSA Open for .NET 3.8 with Visual Studio

Express.

What you need to do when developing with Visual Studio Express:

 8

1. Use the Standalone Data Model Editor to create and edit the data model.

2. Build the data model into an assembly (DLL).

3. From Visual Studio Express, add the following assembly references to your project:

o The data model assembly created in step 2.

o LANSA Open .NET Entity Model assembly.

 9

A Glimpse of LANSA Repository Explorer and Data Model Editor

(Visual Studio Integrated version - left is the Repository Explorer, middle pane is Data Model Editor)

(Standalone version of LANSA Repository Explorer and Data Model Editor)

 10

Why Do We Have the Standalone Version of the Data Model Editor?

The standalone version will come in handy when the person or group designing the data model is different from

the .NET developers who will be developing the actual application.

The rationale behind this:

1. For somebody to be able to construct a model of tables, server functions, and other LANSA objects,

they need to have good understanding of the objects.

2. This person will most likely be a LANSA developer, but not a .NET developer.

3. Since this person is a LANSA developer, most likely he or she will not have a Visual Studio installed in

his or her computer.

4. The standalone Data Model Editor enables the LANSA developer to create a LANSA data model, save it

as a data model file (.lcm), and then pass the file to a .NET developer who will then incorporate the

data model file into their .NET project. Once incorporated into the project, the .NET developers will be

able write C# or VB code that makes use the LANSA objects defined in the data model file.

The standalone Data Model Editor is also useful for somebody who does not have Visual Studio since the

standalone Data Model Editor is capable of generating a .NET assembly (DLL) from the data model file. This

assembly can be referenced from any other .NET applications thus providing access to LANSA objects defined in

the data model file.

What Does the Visual Studio Integrated Version Do That the Standalone Version

Does Not?

In the Visual Studio integrated version, it is possible to incorporate the data model file (.lcm) directly into

your .NET project (C# or VB.NET project) and behind the scenes the .NET classes and methods that

correspond to the objects in the model will be generated automatically every time the model file is saved.

If you are using the standalone data model editor, before it can be used the editor will need to build the data

model file to produce a .NET assembly (DLL) that you need to reference from your own code.

 11

How Do I Start the LANSA Repository Explorer in Visual Studio?

After installing LANSA Open for .NET, under the View menu in Visual Studio there will be a new menu item

LANSA Repository Explorer. Click on that item to open up the LANSA Repository Explorer tool window.

It will appear floating the first time it shows, dock it anywhere you like.

 12

LANSA Repository Explorer

Start by adding a new connection to the Repository Explorer. You can do this either by clicking on the New

Connection button in the bottom toolbar or by opening up the context menu (right-mouse click), then

selecting the New Connection menu item.

The New Connection dialog box will appear, fill in your connection details then press the OK button. If you

are not involved in the administration of a LANSA server, you need to get the following details from your LANSA

administrator:

Server The name or IP address of the server where a LANSA listener is running.

Port The port number that a LANSA listener is running on. One server can have multiple LANSA

listeners running on different ports. The default port is 4545.

 13

Partition A LANSA partition you are connecting to. There might be different partitions assigned for

development, testing, and production.

Language The LANSA language code for this connection. A LANSA language code is a three or four-

letter code that indicates a language (for example, ENG represents English language). A

LANSA partition can be defined as language-neutral or multilingual (supports various

languages). Multilingual partitions allow the storage of field descriptions (among other

things) in various languages.

Username

and password

A LANSA username and password for the connection.

You now have one connection item in your LANSA Repository Explorer.

Try expanding the node. It should now attempt to connect to the LANSA server using the connection details

you specified. If it connects successfully, it will show Tables, Functions, Multilingual Texts, System

Variables, Global Fields and Languages.

Play around and expand those groups. When you click on an object, the details of the objects will be displayed

in the Visual Studio property grid. For example, expand the Tables node, look for the table DEPTAB (one of

the LANSA demonstration objects). Expand the Columns node and then click on the DEPTDESC node. Now

check out your Visual Studio property grid (if you can’t see your property grid it might be hidden), it should

show the details of the DEPTDESC column.

Another handy feature of the LANSA Repository Explorer is its ability to view and edit records in a table. As an

example, go back to the DEPTAB table node. Notice that on the toolbar (or context menu) you can see the

View Data button.

 14

You can now browse the records in the table and edit them if you wish (notice the Edit button at the top).

How Do I Create a New LANSA Data Model File In My Project?

Open the Add New Item dialog box and choose the LANSA Component Model under Templates.

 15

You can now start dragging tables, functions, and multilingual variables from the LANSA Repository Explorer

and drop them on the data model editor.

Can We Add A Data Model (.lcm) to an ASP.NET Web Site?

We can only a data model file to an ASP.NET project, but not to an ASP.NET web site.

ASP.NET project is just like any other project and will be compiled into an assembly (DLL).

An ASP.NET web site is more like classic ASP in the sense that:

1. There is no project file that indicates which files should be compiled – all files under the application

directory will be included.

2. ASP.NET web sites are compiled on-demand automatically - there is no need to compile an ASP.NET

web site before running it.

If you’d like to use an ASP.NET web site instead of an ASP.NET project, you would need to create a separate

class library to host your data model file. Your web site will then have to reference this class library in order to

access the data model classes.

Can I Add a Data Model File to Any Project (Languages)?

You can only add a data model file to C# and VB.NET projects.

 16

What If I’m Not Using C# or VB.NET?

If you are developing .NET applications in other languages, you need to create either a C# or VB.NET project in

your solution to host the data model file. Your other projects should then reference the C# or VB.NET project

containing the data model.

What Do I Do with the Data Model and How Can I Reference It from My Code?

Every time you save your data model, Visual Studio will automatically generate the classes and methods that

represent the objects (and supported operations) in the model. Your code will make use of these classes and

methods to perform necessary operations such as retrieving records and executing server functions.

The single point of access to the objects in the data model is the context object. By default, the class will be

named DataContext (unless you change it in the model properties as illustrated below).

We start always by instantiating the context.

DataContext masterContext = new DataContext(false);

Think of a context an in-memory representation of the database. Records that are retrieved from the server will

become data objects in the client machine’s memory and these data objects are managed by the context.

When a context is updatable, it will automatically keep track of the changes made to any data objects (and

also when we create or delete data objects). Remember though that any changes we make to the data objects

are happening in memory only and will not be committed to the database until we ask the context to do so by

invoking the SubmitChanges method. Once SubmitChanges is called, any changes we made to the data

objects in the context will be committed to the database on the server.

There are two types of context: master (main) context and child context. A context can also be updatable or

read-only. Generally an application would have one instance of master context that will last for as long as the

application is running. A master context would generally also be created as a non-updatable context.

When your application needs to retrieve some records off the server and it does not have any intention of

modifying the data, the master context will generally be used to retrieve those records. For example, when

your application needs to retrieve a list of available departments in an organization to populate a dropdown, it

should use the master context to retrieve those departments.

 17

Child contexts, on the other hand, represent units of work that involve updating the database on the server.

They are created whenever a unit of work starts (generally when a record or a set of records are retrieved from

the server) and disposed when the work ends (generally when the record is not required anymore).

Note that a child context is lightweight and not expensive to create. There is no performance penalty in

repeatedly creating and disposing child contexts.

A typical use of child contexts would be the retrieval (and update) of information on a data entry screen. The

following scenario illustrates the common use of child contexts. Imagine that a user of a HR application needs

to update some details of an employee.

• The application displays the list of employees (master context should be used to retrieve the list).

• After the user selects the target employee, the application should then display the employee's details

on a data entry screen. To achieve that, the application should create a new child context and use it to

retrieve the employee record. A new child context should be created the retrieved employee record can

be updated by the user, which means that we need an updatable context to handle this record.

 18

• The record will be retrieved from the server and made available locally in the context as a data

object. The application binds the data object with some UI controls to display the information and allow

the user to modify some fields. The context will automatically track any changes made to the data

object.

• When the user presses the 'Save' button, the application simply needs to call the SubmitChanges

method of the context to seamlessly apply the changes made in the application to the database on the

LANSA server.

• This current child context will be discarded when the user retrieves a different record from the server

(and a new child context should be created and used to retrieve the record).

Enabling Commitment Control on the Server

To ensure the integrity of the data when performing updates, it is important that all LANSA tables involved in

the updates have their commitment control turned on and auto commit turned off. When the

commitment control for a table is turned on, the table will participate in transactions (changes to the table

can be rolled-back). These settings can be found on the File Attributes tab on the Visual LANSA IDE.

Synchronising Objects on the Data Model with the LANSA Repository

If the structure of an object is changed in the LANSA repository, you need to synchronise your data model with

the LANSA repository. For example, if a new column INITIAL is added to the table PERSONNEL in the LANSA

repository on the server and you have this table in your data model, you need to synchronise your data model.

 19

To do this use the Connect to a server and refresh your objects button as illustrated in the following

screenshot (note that you need to have the LANSA Model node as the active node in order to see the button):

What LANSA Open for .NET Assemblies I need to include when deploying my

application?

You need to include only EntityModel.dll, which can be found in the bin folder of your project, along with

your other assemblies (after your project has been compiled).

Establishing a Connection with a LANSA Server

// Specify most details in the Settings object

masterContext.Settings.Server = "LANSA07";

masterContext.Settings.Partition = "DEM";

masterContext.Settings.PortNumber = 4545;

// Connect

masterContext.Connect("username", "password");

// We can also specify all settings (except language) in the Connect method

context.Connect("LANSA07", 4545, "DEM", "username", "password");

Creating a Master Context

A master context is generally read-only (non-updatable). This is indicated by the false parameter passed to the

constructor.

DataContext masterContext = new DataContext(false);

 20

Creating a Child Context

// The first parameter is the parent context (master context).

// The second parameter 'true' indicates that this context is updatable.

DataContext childContext1 = new DataContext(masterContext, true);

Retrieving Records

Assume that we have a table called Person in our data model and its plural name is Persons that maps to the

table PSLMST which is part of the standard LANSA demo.

Person[] personList = masterContext.Persons.RetrieveList();

The code above will retrieve all records in the PSLMST table (all columns will be retrieved).

If we want to retrieve only the FirstName (GIVENAME) and Surname (SURNAME) columns, here is how we

do it:

Person[] personList = masterContext.Persons.RetrieveList(PersonCols.FirstName + PersonCols.Surname);

When we want to retrieve only persons whose salary is greater than 50,000:

Person[] personList = masterContext.Persons.RetrieveList(PersonExprs.Salary > 50000);

Note how columns of the Person table are referenced through PersonExprs (as opposed to PersonCols)

when used in an expression.

PersonExprs includes only real columns, whereas PersonCols includes real columns and virtual columns.

(virtual columns are columns whose values are derived from real columns). The implication of this is that you

can only use real columns but not virtual columns in your conditional expression.

If we want to retrieve only persons whose salary is between 50,000 and 100,000:

var condition = (PersonExprs.Salary > 50000).And(PersonExprs.Salary < 100000);

Person[] personList = masterContext.Persons.RetrieveList(condition);

Notice the use of the ‘And’ operator. The ‘Or’ operator can be used in the same way.

We can also search for records that match certain keys. For example, the key column of the PSLMST table is

EMPNO (assume local name is EmployeeNo). The RetrieveList methods will look like this:

RetrieveList(bool exactMatch, string EmployeeNo)

 21

The exactMatch parameter works like this:

• If set to true, the key values have to match exactly,

• If set to false, partial matches are accepted.

For example, if exactMatch is false, a search for EmployeeNo = "A1" will match records with EmployeeNo

A1001, A1002, and A1003.

// Exact match: the following will return only employee with EmployeeNo = "A1001"

Person[] personList1 = masterContext.Persons.RetrieveList(true, "A1001");

// Partial match: the following will return employees whose EmployeeNo starts with "A1"

Person[] personList2 = masterContext.Persons.RetrieveList(false, "A1");

Use the RetrieveI tem method to retrieve just the first item. Note however that RetrieveI tem supports only

exact matching.

// Retrieve the first person whose employee no is "A1001".

// Notice that we don’t need to specify exact/partial matching as it’s always

// exact matching.

Person person = masterContext.Persons.RetrieveItem("A1001");

// Check for null reference (null is returned if the record can’t be found)

if(person != null)

{

 // ...

}

Submitting Changes Back to the Server

Remember that any changes made to the data objects will not be committed to the server until

SubmitChanges is invoked.

context.SubmitChanges();

SubmitChanges does three things:

• Updates existing records that correspond to modified data objects in the context.

• Creates new records that correspond to newly instantiated data objects in the context.

• Deletes records that correspond to deleted data objects in the context.

Inserting a New Record to a Table

// Create a new 'Person' data object

Person person = new Person();

 22

person.EmployeeNo = "A9001";

person.FirstName = "Andrew";

person.Surname = "Johnson";

// The context needs to be aware of this new person data object,

// so that later when we ask the context to submit all changes

// to the database, the new person will be included.

// So we attach the new data object to the context.

context.Attach(person);

// At this stage, the person data object exists locally in the context.

// To actually create a new person record on the server,

// we need to call SubmitChanges.

context.SubmitChanges();

Populating Default values of Fields in a Data Object

When we create a new data object, most of the time we want to populate the fields in the data object with

their default values (fields have their default values defined in the LANSA Repository). For example, an

employee’s start date field might have a default value of today’s date.

Person person = new Person();

// Populate the default values of fields in the person data object

context.SetDefaultValues(person);

Please note that SetDefaultValues requires an online data context (that is, it has to be connected to a LANSA

server).

Deleting a Record

// Indicate to the context that the specified person should be deleted

// the next time SubmitChanges is called

context.Delete(person);

// At this stage, the person record has been marked for deletion.

// We need to call SubmitChanges to actually delete the record on the server.

context.SubmitChanges();

Checking the State of a Data Object

A data object can have one of these 6 states:

State Context Type Description

Detached N/A The data object has not been attached to any

context.

 23

A data object that has just been instantiated will

have this state.

New Updatable The data object is attached to an updatable context

and it does not correspond to any record yet on the

database on the server. When SubmitChanges is

called, a new record will be created.

Unmodified Updatable The data object corresponds to an existing record on

the database and no changes have been made to it

locally.

Modified Updatable The data object corresponds to an existing record on

the database and some changes have been made to

it locally (but the changes won’t be made to the

database on the server until SubmitChanges is

called).

Deleted Updatable The data object corresponds to an existing record on

the database and it has been marked for deletion.

When SubmitChanges is called, the actual record on

the server will be deleted.

Readonly Non-updatable The data object is attached to a non-updatable

context. This is the only state that non-updatable

data objects can have.

To get the state of a context, use the GetObjectState method of the context instance:

Employee employee = new Employee();

DataObjectState state = context.GetObjectState(employee);

Submitting Changes to the Server, Catch and Display Messages when Errors

Occur

try

{

 context.SubmitChanges();

}

catch (ApplyChangesException exception)

{

 StringBuilder messageBuilder = new StringBuilder();

 // iterate through each error encountered

 foreach (DataObjectErrorInfo error in exception.Errors)

 {

 string message = error.Message;

 messageBuilder.AppendLine(message);

 24

 }

 // show the error

 MessageBox.Show(messageBuilder.ToString());

}

Submitting Changes to the Server & Resolving Update-conflict

A record encounters an update conflict if after we read the record off the server and before we have a chance

to submit our changes back to the server, either:

• Somebody else deleted the record on the server.

• Somebody else has changed some values that we are also changing (for example, we are changing

the first name field and the other party is also changing the first name field).

An update conflict needs to be resolved before another attempt is made to submit our changes to the server.

// We need to repeat the call to SubmitChanges when conflict has been resolved.

// Use do-while construct to repeat when necessary.

bool repeat;

do

{

 // Do not repeat SubmitChanges if there is no conflict

 repeat = false;

 // Apply changes to the server

 try

 {

 context.SubmitChanges();

 }

 catch (ApplyChangesException exception)

 {

 // Each ObjectChangeConflict represents a conflict information for a record

 foreach (ObjectChangeConflict changeConflict in exception.ChangeConflicts)

 {

 // Handle the 'Person' record

 if (changeConflict.Object is Person)

 {

 Person person = (Person)changeConflict.Object;

 // Check if the person has been deleted from the database?

 if (changeConflict.IsDeleted)

 {

 // Inform the user that the person no longer exists on the server

 // Nothing else can be done after that

 string message = "Employee {0} has been deleted from the server.";

 message = string.Format(message, person.EmployeeNo);

 MessageBox.Show(message);

 }

 else

 {

 string message =

 "Employee {0} has been modified by somebody else, " +

 "Keep your changes and discard the other changes?";

 25

 message = string.Format(message, person.EmployeeNo);

 // Ask the user which values to keep

 var buttons = MessageBoxButtons.YesNo;

 DialogResult answer = MessageBox.Show(message, "Update Conflict", buttons);

 if (answer == DialogResult.Yes)

 {

 // Keep our changes and discard other person's changes on the database

 changeConflict.Resolve(ConflictResolveMode.KeepCurrentValues);

 }

 else

 {

 // Discard our changes and keep the other person's changes on the database

 changeConflict.Resolve(ConflictResolveMode.OverwriteCurrentValues);

 }

 // Must repeat the submit changes after conflict has been resolved

 repeat = true;

 }

 }

 }

 }

} while (repeat);

Getting the Server to Validate the Changes Made to Records Without Actually

Committing the Changes

Use the ValidateChanges method of the context object

DataValidationResult result = context.ValidateChanges();

// Check if validation is successful or not?

if(!result.IsSuccessful)

{

 // "InvalidObjects" property gives us the list of each data object that fails the validation.

 foreach (DataObjectErrorInfo errorInfo in result.InvalidObjects)

 {

 // The 'Columns' property of the error info tells us which columns

 // contain invalid values

 string message = "The following fields contain invalid values: ";

 foreach (Column column in errorInfo.Columns)

 {

 message += "\n" + column.Label;

 }

 // The 'Errors' property gives us the list of validation messages

 message += "Error messages:";

 foreach (Error error in errorInfo.Errors)

 {

 message += "\n" + error.Message;

 }

 //

 MessageBox.Show(message);

 26

 }

}

Real & Virtual Table Columns

A LANSA table’s columns can be either real or virtual.

A real column is a column that physically exists on the table and stores a value. A virtual column does not

physically exist on the table, and its value is derived or calculated from other columns in the table.

Accessing a Column’s Multilingual Texts (Labels, Headings)

There are 2 ways of referencing a column of a table. Let’s use the Person table and EmployeeNo column as

an example.

The first way to reference the EmployeeNo column is through the PersonCols class (context-less column):

var employeeNoCol = PersonCols.EmployeeNo;

The second way to reference the EmployeeNo column is through the context’s Persons entity (context-aware

column):

var employeeNoCol = context.Persons.Columns.EmployeeNo;

Real Columns

Virtual Columns

 27

It’s fine to use either way if we just want to specify which columns to retrieve when requesting some data off

the server. However if we want to access the multilingual texts of the column we have to use the context-

aware columns (since the texts returned will depend on the language currently used).

So if we try to do the following, an exception will be thrown.

string label = PersonCols.EmployeeNo.Label;

The right way to get the label of the column is one of the following two ways:

string label = context.Persons.Columns.EmployeeNo.Label;

string label = context.Localized[PersonCols.EmployeeNo].Label;

Deleting Multiple Records

To delete several records at once, use the DirectDelete method.

Important note: DirectDelete operates directly on the database on the server – records are deleted right

away, not when SubmitChanges is called (no call to SubmitChanges is required).

To delete all employees in AUD department:

context.By_DeptEmployees.DirectDelete("AUD");

To delete all employees with salary greater than 50,000:

context.Employees.DirectDelete(EmployeeExprs.Salary > 50000);

Updating Multiple Records

To update several records at once with the same values, use the DirectUpdate method.

Important note: DirectUpdate operates directly on the database on the server – records are updated right

away, not when SubmitChanges is called (no call to SubmitChanges is required).

Unlike DirectDelete, DirectUpdate does not support expressions.

To update the salary of all employees in AUD department to 50,000:

Employee values = new Employee();

values.Salary = 50000;

context.Employees.DirectUpdate(values, EmployeeCols.Salary, "AUD");

Beginning & Ending a Transaction

Transaction can be started by invoking the BeginTransaction method of the context object.

 28

context.BeginTransaction();

Ending a transaction is done by invoking either CommitTransaction or RollbackTransaction.

// Commit

context.CommitTransaction();

// Rollback

context.RollbackTransaction();

Notes:

• SubmitChanges method automatically starts a transaction before it begins applying changes to the

database. If no error occurs, it will automatically commit the changes, otherwise a rollback will be

performed.

• In order for a database table to support this transaction, it needs to have its commitment control

turned on. Please see the section Enabling Commitment Control on the Server for further details.

How Do the LANSA Field Types Map to .NET Runtime Types?

LANSA Field Type .NET Runtime Type Overridable in the Model?

Signed

Packed

(where decimals > 0)

Decimal Yes

Signed

Packed

(where decimals = 0)

Int64 Yes

Integer Int64 Yes

Float Double Yes

String

Alpha

Nchar

NVarChar

CLOB

BLOB

String No

Date

Time

DateTime

DateTime No

Binary

Varbinary

Byte[] No

Boolean Bool No

 29

The .NET run time data type mappings for numeric fields can be overridden in the model by selecting column

and changing its CLR Data Type (Base Field) property:

Data Context Advanced Options

The properties that control the behaviour of the data context reside in the Options object in the data context.

Code example to change the property PerformBasicDataValidation:

DataContext context = new DataContext(true);

context.Options.PerformBasicDataValidation = false;

Below is the list of the available options and their descriptions.

RowIdentityType

Indicates the identity system to use to identify data rows.

Data rows can be identified using either their Relative Record

Numbers (RRN) or their primary keys.

Relative record number: a relative record number identifies the

positions of the records relative to the beginning of the file. For

example, the relative record numbers of the first, fifth, and

 30

seventh records are 1, 5, and 7, respectively

Generally speaking, RRNs should be used whenever they are

available, however there are circumstances when it is

recommended to use primary keys instead of RRNs. An example

would be when providing an offline data entry support. In this

case, a context or data object is serialized and then stored for an

extended period of time on the user's local computer harddrive.

Since an RRN of a record in an IBM i database table is not

guaranteed to remain the same (reorganization of the tables might

change RRNs), it becomes necessary to identify records using their

primary keys instead.

In an IBM i system, all tables will have RRN. This is however not

the case in a Microsoft Windows system where the existence of an

RRN column in a table is an option that can be set by the creator

of the table (through Visual LANSA IDE).

RowIdentityType can be set to either:

• UseRelativeRecordNumberWhenAvailable

The Relative Record Number (RRN) should always be used

as a row's identity when the table support RRN, otherwise

use the table primary keys.

• AlwaysUsePrimaryKey

Primary keys should always be used as identity regardless

of whether the table supports RRN or not

PerformBasicDataValidation

Indicates whether basic data validations should be performed on

the client before data is submitted to the server.

Basic data validations are simple and automated validations that

are performed based on each column’s input attributes and data

type as defined in the LANSA repository.

Note that custom validation rules defined in the repository are not

part of the basic data validation (custom validation rules are

imposed on the server, not on the client).

About Input Attributes

Any LANSA field defined in the repository has a set of input

attributes that constraint the kind of value that the field can

contain. For example, we can indicate that a SURNAME field

should always have a value.

 31

PerformBasicDataValidation can be set to either true or

false.

The list of checks that are performed in a basic data validation are

as follows:

• If the field does not allow blank value, check that the

value of the field is not blank.

• If the field is marked as containing an IBM i object name,

check that the value of the field is a valid IBM i object

name.

• If it is indicated that the value of the field should occupy

the entire field length, check that the length of the value is

the same as the maximum length of the field.

• If the field is marked as unsigned, check that the value is

not negative.

• Check that the length of the value does not exceed the

maximum length of the field.

• Check that the number of decimal digits does not exceed

the maximum allowed.

PerformServerValidationOnSubmitChanges

Indicates whether data validation on the server should be

performed on all changed records as a whole before modifying

the records on the database.

Note that server validation will always be performed regardless of

whether this property is set to true or false, it’s just a matter of

when the validation will be performed.

To illustrate the difference better, imagine that we have 2 records

to update. Notice the sequence of events for each case.

With PerformServerValidationOnSubmitChanges property

set to false:

1. Validation of record 1

2. Update record 1 on the database

3. Validation of record 2

4. Update record 2 on the database

If step 3 fails, step 2 would have been performed which means

record 1 would have been updated on the database. If the

particular table does not support commitment control, the

runtime does not have any way to rollback the changes made in

the step 2 and the integrity of the database could be

compromised.

With PerformServerValidationOnSubmitChanges property

 32

set to true:

1. Validation of record 1

2. Validation of record 2

3. Update record 1 on the database

4. Update record 2 on the database

If step 2 fails, no records will have been updated so the integrity

of the database has not been compromised.

Enabling PerformServerValidationOnSubmitChanges might

have performance impact, however it should be negligible on most

cases and it is recommended that you enable this property at all

times.

CheckUpdateConflicts

Indicates whether to detect if update conflict is present when

trying to update a record.

An update conflict is present if the runtime finds that the

record was updated by another entity (another instance of the

application for example) between the time the record was

retrieved and the time the update request was made.

If CheckUpdateConflicts is set to true, the runtime will detect if

such conflicts are present and raise an exception if conflicts are

found.

Conflicts must be resolved (either by discarding the current value

in the memory or the current value in the database) before

another attempt at the update can be made.

UpdateModifiedColumnsOnly

Indicates whether only columns (and by implications objects) that

are modified (in memory) should be submitted for update. For

most cases, it is sufficient and recommended to update only

modified columns, however there might be times when you might

prefer to update all columns (set this property to false).

For example, we retrieve a record from a table called Person

Person person = context.Persons.RetrieveItem(…)

We change only the Salary column & call SubmitChanges

(UpdateModifiedColumnsOnly is true)

 33
Person.Salary = Person.Salary * 1.05;

context.SubmitChanges();

Since UpdateModifiedColumnsOnly is true, the runtime will try

to update only the Salary field and completely ignore other fields.

This means that update-conflict check will only be performed on

that field.

If in the meantime, somebody else changes say the Postcode field

of that person, you will not be aware of it as no update-conflict will

be raised.

Please note that setting UpdateModifiedColumnsOnly to false

could carry a performance penalty on updating records, especially

if there are many records in the data context (remember that the

runtime will have to go through all records in the data context

even for those that have not been modified since the runtime has

to compare the in-memory values with actual values of those

records in the database).

It is therefore important to make sure that you dispose or clear

your data context whenever you are retrieving a new set of

records to ensure that only records that are relevant to the current

unit of work are present in the data context.

DataSource

Indicates where data is coming from when retrieving data (using

RetrieveList or RetrieveItem operations).

There are 2 possible values:

• Database

The records will be retrieved from the database on the

server.

• Dataset

The records will be retrieved from the context’s embedded

dataset. A context’s embedded dataset is accessible

through the DataSet property of the data context (e.g.

context.DataSet).

The DataSource property is useful when your application

supports offline mode. This way you can use the same fragment of

code to retrieve your records for both offline & online mode, you

just need to set the DataSource property accordingly (Database

for online, Dataset for offline).

 34

ListAutoLoadEnabled

Indicates whether child list should automatically be populated

when any operation is performed on the list for the first time (for

example when the Count property is accessed).

AttemptUpdateLockingWait

Indicates how long (in milliseconds) the runtime should wait when

trying to acquire an update lock for a data row before it gives up

and generates an error.

The runtime locks a data row before it proceeds with the change

conflict detection to ensure that nobody updates the row while the

change conflict detection is performed.

AutoDeleteDependentRecords

Indicates whether child records should automatically be deleted

when the parent record is deleted.

Child records are records whose foreign key values are set to the

primary key values of the parent record. The parent table has a 1-

to-N relationship with the child table.

Enable the use of this feature with care.

To illustrate the use of this property, imagine we have such tables

in our data model. Notice that the Employee table has a

relationship with the Skills table (1-to-N).

On the LANSA Repository, there is a validation rule defined that

prevents an Employee record who has Skill records associated

with it from getting deleted.

This means that if we want to delete an Employee record that

has some Skill records associated with it, we need to delete the

 35

Skill records first.

To let the runtime do this automatically for us, we can set

AutoDeleteDependentRecords to true. But note that we also

need to set the PerformServerValidationOnSubmitChanges

to false, otherwise the validation phase will always fail since the

runtime will have not deleted the associated Skill records in the

validation phase (the validation phase has no way of knowing that

the runtime is intending to delete the Skill records).

How to Assign a Database NULL Value to a Column in a Record?

If a column in a database table is nullable (a column is nullable if the LANSA field it is based on has an input

attribute ASQN which stands for Allow SQLNULL).

If the data type of the column is not alphanumeric, it will map to a value-type CLR data type (such as Int32,

Double). Since these types cannot be set to null, the LANSA Open for .NET runtime needs to use special values

to indicate that we want to set those columns to database NULL when saved to the database.

By default the special values representing the database NULL are the MaxValue of the data type for value-

type and null for reference type. For example, to indicate that we want to assign a database NULL value to

the Person.TerminationDate (DateTime) column and also to the Person.Notes (string) column:

Person person = ...

person.TerminationDate = DateTime.MaxValue;

person.Notes = null; // string is reference type so set to null

// When we call SubmitChanges, both the TerminationDate and Notes column of this record

// will be set to NULL on the database

context.SubmitChanges();

We can change the special values that indicate database NULL to something else. We do that by using the

static method SetDbNullValue of the Context class. Example of usage:

// To set the database NULL value of Int64 value to Int64.MinValue

Context.SetDbNullValue(typeof(Int64), Int64.MinValue);

Accessing Original Values in a Data Object

Original values are values that are retrieved from the database. To find out the original values, use the

OriginalValues property of the data object (it contains properties; each represents a field in the data object).

Code example:

 36

Person person = context.Persons.RetrieveItem(...)

// Modify the Salary field of the person

person.Salary = person.Salary * 1.05;

// Get the original value of the Salary field as retrieved from the database

var originalSalary = person.OriginalValues.Salary;

Getting Error Information From ApplyChangesException

ApplyChangesException is the exception that is thrown when an attempt to update records on the server’s

database failed (through the call to the data context’s SubmitChanges method). An attempt to update records

could fail if:

• Basic data validation (client side validation) failed.

• Server-side validation failed.

• Update conflicts are present.

• A fatal error occurs on the server.

An ApplyChangesException object has two properties that tell us more about the nature of the problem:

• Errors (Collection of DataObjectErrorInfo)

A collection of error information items. Each item is associated with a data object and it contains the

details of the error that occurred for that data object.

• ChangeConflicts (Collection of ObjectChangeConflict)

A collection of update conflicts. Each item is associated with a data object and contains the details of

the update conflicts that are present for that data object.

Each item in the Errors collection is a DataObjectErrorInfo object, and it has the following properties that

describe the error that occurred for a data object:

Object Reference to the data object that the error was caused by.

ErrorReason Indicates the cause of the error. Possible values:

• PrevalidationError: some values in the data object failed the basic

validation (client-side validation).

• ValidationError: the data object failed the server side validation.

• KeyAlreadyExists: this error occurs on the insertion of new record. It

indicates that there is already another record in the database with the

same key values as the new record we are trying to insert.

Columns When the cause of the error is either PrevalidationError or ValidationError,

this property will contain the columns that failed the validation.

If the error is caused by PrevalidationError, information on the reason the

validation failed can be retrieved from the PrevalidationColumnErrors property.

PrevalidationColumnErrors When the cause of the error is PrevalidationError, each item in this list contains

 37

the reason the validation failed for the column specified in the Columns list on the

same index (PrevalidationColumnErrors[i] corresponds to the column specified in

Columns[i]).

Errors List of detailed error messages.

Message All error messages as one string (multiline, each error message is placed in a new-

line).

Each item in the ChangeConflicts collection is an ObjectChangeConflict object, and it has the following

properties that describe the update-conflicts that occurred for a data object:

Object Reference to the data object that caused the update conflicts.

IsModified Indicates if the conflict occurs because some columns have been modified on the

database since they were last read by this application.

IsDeleted Indicates if the conflict occurs because the actual database row that corresponds to

this data object has been deleted.

MemberConflicts List of items, each item provides information on each individual column that caused an

update conflict.

Each item is a MemberChangeConflict object and contains the following properties:

• Column: indicates the column that causes this conflict. You can use the

properties of the column (such as Description) to display meaningful

information for the users of the application.

• OriginalValue: the original value of the column (as retrieved from the

server) by this application.

• CurrentValue: the current in-memory (local) value of the column.

• DatabaseValue: the current database value of this column on the server’s

database.

Handling Locking of Row before Update

LANSA Open for .NET runtime automatically creates a logical lock for every row that it is about to update to

avoid simultaneous update by different parties. The lock is applied before change-conflict detection takes place

to guarantee the integrity of the change-conflict detection process. By default, the lock name will be the name

of the LANSA table, and the identifiers will be either the Relative Record Number (RRN) or the primary key

values.

However, your .NET application might not be the only application that has the ability to update records. Legacy

applications (such as LANSA RDML applications) might have already been in operation, and they most likely

would have their own locking mechanism. In this case, the locking routine in your .NET application will have to

work in the same way as the existing LANSA applications.

To provide your own locking routine, we need to create two event handlers and attach them to these 2 static

events:

• DataContext.Events.LockObjectForUpdate

• DataContext.Events.UnlockObjectAfterUpdate

 38

As an example, assume that we have a logical lock defined in our model called Employee. Our locking

routine will look like the code below. Note that it is very important to assign the args.Successful property with

true or false. If you don’t assign this property, LANSA Open for .NET runtime will assume that you do not

have your own routine and it will execute its own standard locking routine.

private void Events_LockObjectForUpdate(object sender, LockObjectEventArgs args)

{

 if (args.Object is Employee)

 {

 Employee employee = (Employee)args.Object;

 try

 {

 context.LogicalLocks.Employee.Lock(employee.EmployeeNo);

 args.Successful = true;

 }

 catch (ObjectAlreadyLockedException)

 {

 args.Successful = false;

 }

 }

}

Serializing a Context

Serializing a context means generating a string representation of the context. Some practical use of context

serialization:

• To enable a context to be persisted on any medium. For example, web applications have to persist

the context somewhere in-between requests since they are stateless in nature. Another application is

to provide offline data entry support (ability to enter data when the application is not connected to a

server).

• To transport a context easily to another computer. For example, in an architecture where a client

application does not talk directly with a LANSA server, but it talks with an intermediary (application

server), which in turns talk with the LANSA server (client  app-server  LANSA). In such

architecture, the context will need to be transported back and forth between the client and app-

server.

Serialization

// Retrieve a person

Person person = context.Persons.RetrieveItem("A1001");

// Change the salary

person.Salary += 10000;

// Use object reference store to to keep a reference to the person data object,

// otherwise we will lose it after we deserialize the context back.

context.ObjectReferenceStore.Add(person);

 39

// Serialize the context.

// Notice that we have not submitted the changes back to the server.

// We will do that later after we deserialize the context

// to illustrate that context serialization fully preserves the

// context's state.

string serializedContext = context.Serialize();

Deserialization

// Get the stored string representation (serialized context).

string serializedContext = . . .;

// Reconstruct the context from the string representation of it.

DataContext context = DataContext.CreateFromSerialized(serializedContext);

// Restore our reference to the person data object.

Person person = (Person)context.ObjectReferenceStore[0];

// We might display the values in the person object

// to the user e.g. on a data entry screen.

// ...

// Submit changes back to the database.

// This will include the change made to the salary field before serialization/deserialization.

context.SubmitChanges();

Note the use of the object reference store to maintain the reference to our Person data object. Right

before we serialize the context, we add the reference to our Person data object to the context’s object

reference store. When the context is serialized, it will also serialize the reference to our Person object. When

we deserialize the context back, we can get back the reference to the Person object by retrieving it from the

object reference store.

Serializing Data Objects in a Context

We can also serialize some data objects instead of the whole context, which will generate the string

representation of those data objects. When deserialized, the data objects can be attached to any existing

context.

Serialization

// Retrieve a person

Person person = context.Persons.RetrieveItem("A1001");

string serializedPerson = context.Serialize(person);

Deserialization

// Get the stored string representation of the Person data object.

 40

string serializedPerson = . . .;

// Reconstruct the Person from the string representation of it

// The resulting Person data object will be attached to the context

// that performs the deserialization.

Person person = context.DeserializeObject(serializedPerson);

You can also serialize a collection of data objects as illustrated below:

// Retrieve all persons

Person[] personList = context.Persons.RetrieveList();

string serializedList = context.Serialize(personList);

Turning On LANSA Connection Pooling

When connection pooling is turned on, LANSA Open for .NET will run a pool of connections that are kept open

and ready for use when a request is made. The purpose is to avoid having to establish a new physical

connection with the LANSA server every time a request comes in (establishing a new connection is a costly

operation).

Connection pooling is normally not required for desktop (client) applications, however it generally should be

enabled for web applications as web applications are stateless (which means that they are required to open a

new connection at the beginning of each request and close it at the end of the request). As mentioned earlier

opening a new physical connection takes time. If pooling is not enabled, the webserver response to the

browser might be delayed while it is waiting for the connection to the LANSA server being established.

The class that controls all aspects of the connection pooling is LOpen.EntityModel.ConnectionPool.

To enable the pooling, set the Enabled property to true.

ConnectionPool.Enabled = true;

Below is a list of the properties that control the behaviour of the connection pooling.

Property Name Description

MaxPoolSize The maximum number of connections that the pool can have.

This is to ensure that the web application does not open too many

connections to the LANSA server.

MinPoolSize The minimum number of connections that should be maintained in the

pool.

This is to ensure that response time for most web requests will be

consistent.

 41

InactiveConnectionTimeout Indicates how long (in seconds) an unused connection should be

maintained in the pool before it can be closed and removed from the

pool (assuming that the number of connections in the pool is more than

the MinPoolSize).

AcquireConnectionTimeout Indicates how long (in seconds) the application should wait when no

connection is available in the pool (and the number of connections in

the pool has reached MaxPoolSize).

When writing ASP.NET applications, the appropriate place to put the code that configures the connection

pooling behaviour is the Application Start event in the Global.asax file as illustrated by the example below:

 void Application_Start(object sender, EventArgs e)
 {
 // Enable the connection pooling
 ConnectionPool.Enabled = true;

 // Setup the connection pooling behaviour
 ConnectionPool.MaxWaitForConnection = 30; // 30 seconds
 ConnectionPool.MaxPoolSize = 10;
 ConnectionPool.MinPoolSize = 5;
 ConnectionPool.InactiveConnectionTimeout = 600; // 10 minutes
 }

DataContext Serialisation & Deserialisation

Serialising a DataContext generates a string representation of the current state of the DataContext. The current

state of a DataContext includes table rows that have been retrieved from the database and their state (that is

which column values have been modified or which rows have been deleted).

This string representation can then be deserialised back to a DataContext object.

Why do we need to be able to serialise a DataContext into a string?

There are times when it is not feasible or possible to continuously keep the DataContext in memory as an

object. For example, when we are developing an ASP.NET application, so that the DataContext survives

between the stateless web requests, we need to save the DataContext somewhere between one request and

the next.

We might prefer to keep the DataContext in the “view state” as opposed to using the in-memory Session

object. Or we might want to store the DataContext in an SQL server table. If we choose to store the

DataContext in the “view state” or as a value in an SQL server table, we need to serialize the DataContext first

to its string representation, store it in the “view state” or the table, then deserialize it back to the DataContext

object on the next request.

Offline Operation

DataContext serialisation can also be useful when our application supports offline data entry. For example, a

contractor working on a site might not have online connection to the LANSA server. In this case, he/she will

need to enter the data offline and later reconcile the new data with the database on the LANSA server. In this

case, the new records will be created and stored in the DataContext. The DataContext will then be serialized

into a string and stored locally in the contractor’s notebook harddrive. The next time the contractor connects

the application to the LANSA server, it will simply deserialize the DataContext containing the new records and

 42

simply call a SubmitChanges on the DataContext to reconcile all the new records with the database on the

LANSA server.

Serialising a DataContext

string contextAsString = context.Serialize();

Deserialising a DataContext

DataContext context = DataContext.CreateFromSerialized(contextAsString);

Or if we want to use a specific instance of DataContext:

// Somewhere we have the DataContext instantiated

context = new DataContext(true);

...

// Now we want to use the same instance when deserialising

// instead of creating a new one

context.Deserialize(contextAsString);

Data Model Version Number

Our LANSA data model has a version number that we can set. The figure below shows where we can set this

version number (it’s a property of the root node of our data model document).

 43

If we are serialising our DataContext and we store the string representation for an extended period of time (as

in the case with the offline data entry capability), we need to make sure that when we update our LANSA data

model we change the version number, so that the L/Open.NET runtime can tell if a string representation of a

DataContext is compatible with the DataContext that tries to deserialise it. If you do not change your data

model version after making a change to it, L/Open.NET runtime will have no way of knowing that your data

model has changed. If you then deserialise a string that was serialised with the previous version of the data

model, the data in the DataContext will be corrupted. So it is very important that we change our data model

version number when we change anything in our data model.

Another Use of DataContext Serialisation

DataContext serialisation can also be useful when the client application communicates with an application

server (using remoting or web services) instead of directly to a LANSA server. The application server

communicates directly with the LANSA server. This architecture gives the client application freedom in regards

to the way data is transported between the client and the application server. The client can now use web

services or .NET remoting to transport data.

In this sort of architecture, we can see where the DataContext serialisation comes in.

1. The client application will have an offline DataContext (a DataContext that is not connected to a LANSA

server).

2. When the user requests a record to be retrieved, the client then passes the request to the application

server.

3. The application server uses the online DataContext (connected to a LANSA server) to fetch the

requested data into its DataContext.

4. The application server then serialises the DataContext and then transmits it to the client application.

5. The client application receives it and deserialises it back to a DataContext object.

6. The user can then modify the value of some fields and the changes will automatically be tracked by the

DataContext.

7. When the user requests the changes to be saved, the client application serializes the DataContext &

send it to the application server.

8. The application server receives it, deserialises it back to a DataContext object.

9. The application server then calls SubmitChanges on the DataContext to get the LANSA server to

update its database with the changes.

10. An error might occur in the application server and an ApplyChangesException exception might be

raised. Since this needs to be passed back to the client application, the application server serialises this

exception, transmit to the client who then deserialises it back to an ApplyChangesException object.

Serialising ApplyChangesException Object

catch (ApplyChangesException ex)
{

string asString = context.Serialize(ex);
}

 44

Deserialising ApplyChangesException Object

ApplyChangesException ex = context.DeserializeApplyChangesException(asString);

DataValidationResult object can also be serialised and deserialised in a similar manner as above.

Context’s Embedded Dataset

Each instance of a context contains an embedded dataset, which is a container where we can put various data

objects in. The reasons why we want to put our data objects in the context’s embedded dataset are:

• All data objects stored in the dataset will be preserved when the context is serialized.

• The data objects stored in the dataset can be used as a data source for data retrieval. This means that

when we do say a RetrieveList operation for a Person table, the data can come either from:

1. The database on the server, or

2. The objects stored in the context’s embedded dataset.

To indicate to a context that it should retrieve from its dataset instead of the server, set the

Options.DataSource property to Dataset (by default it is set to Database).

Since the context’s dataset can be used as a data source, one of its practical applications would be for data

caching or to support offline data entry. For example, assume that we know that department list in our

company does not change often so we can safely cache it (in the case of offline data entry capability, it is a

necessity to have a local cache of the department list).

1. The first time, the application connects the context to the server (online).

2. The application retrieves the list of departments off the server.

3. It adds the retrieved department data objects to the context’s dataset.

4. It disconnect the context (offline).

5. It now sets the DataSource property of the context’s Options to Dataset.

6. It then serializes the context and store the resulting string in the computer’s local harddrive.

// First time, retrieve the department list off the server

context.Connect("username", "password");

Department[] departments = context.Departments.RetrieveList();

context.Disconnect();

// Add the deparments to the context’s dataset

context.DataSet.Add(departments);

// Serialize the context

context.Options.DataSource = DataSourceType.Dataset;

string serialized = context.Serialize();

// Save the serialized string somewhere in the local computer.

System.IO.File.WriteAllText("path", serialized);

 45

7. The next time the application is run, the context will be deserialized – the dataset will contain the

department list.

8. When the application calls the RetrieveList method of the Department table, the existing

departments in the context’s dataset will be returned.

// Deserialize the context

// Get the serialized string stored in the local computer

string serialized = System.IO.File.ReadAllText("path");

DataContext context = DataContext.CreateFromSerialized(serialized);

// Context remains offline.

// Before we serialized the context we have set the 'DataSource'

// property to 'Dataset' (the serialization process remembers that setting).

// The RetrieveList below will retrieve the existing department objects

// stored in the dataset.

Department[] departments = context.Departments.RetrieveList();

Creating a Server Function Definition in the Data Model

• We start by dragging a function from the LANSA Repository Explorer and dropping it on our data model

document.

• Local Fields are fields used by the function that are defined locally (in the function).

Primitive parameters are exchanged fields.

List Parameters are working lists.

 46

• If the function uses fields that are defined locally in the function (not in the LANSA Repository), we

should define those fields in our model.

If we do a mouse right-click on the Local Fields node, we can see that there are 2 ways to define a

local field:

1. Define a completely new field.

2. Define a new field that is based on another field (reference field). There are 3 ways we can do

this:

a. Drag a global field from the LANSA Repository Explorer and drop on the Local Fields

node.

 47

b. Drag a column of a table from the LANSA Repository Explorer or from a table in our

model. When we drop the column on the Local Fields node, the field that the column

is based on will be used as the base field for the new field.

Data Model

Repository Explorer

c. Drag another local field to create a new field based on that local field and drop on the

Local Fields node.

 48

• To add a primitive parameters, there are three ways of doing that:

o Drag one of the fields under the Local Fields node and drop it on the Primitive Parameters

node.

o Drag a global field from the LANSA Repository Explorer and drop it on the Primitive

Parameters node.

o Drag a column of a table in the LANSA Repository Explorer or a column of a table in our model

document.

We must indicate if a parameter is an input or output parameter.

• Adding a list parameter should be straightforward. The list’s columns are the fields contained within the

working list. List’s columns can be added in the same way as primitive parameters.

Invoking a Server Function

Assuming that we have a function called ADD on the server and we have created its definition on our data

model.

 49

Value1 and Value2 are input parameters, Result is an output parameter.

// Create an 'invoke info' object.

// An 'invoke info' object is where you put all the parameters

// you need to pass when calling the server function.

// After the function is executed, any values returned by the server

// are available in the 'invoke info' object as well.

AddInvokeInfo invokeInfo = context.Add.CreateInvokeInfo();

invokeInfo.In.Value1 = 5;

invokeInfo.In.Value2 = 10;

// Invoke the function, passing the parameters

context.Add.Invoke(invokeInfo);

// Get the result returned by the function

long result = invokeInfo.Out.Result;

Invoking a Server Function with List Parameters

// Create an 'invoke info' object.

// An 'invoke info' object is where you put all the parameters

// you need to pass when calling the server function.

// After the function is executed, any values returned by the server

// are available in the 'invoke info' object as well.

SumInvokeInfo invokeInfo = context.Sum.CreateInvokeInfo();

// Add values to sum to the list

Sum_ValuesItem item1 = new Sum_ValuesItem();

item1.Value = 10;

invokeInfo.Lists.Values.Add(item1);

Sum_ValuesItem item2 = new Sum_ValuesItem();

item2.Value = 10;

invokeInfo.Lists.Values.Add(item2);

// Invoke the function

context.Sum.Invoke(invokeInfo);

// Get the result

long result = invokeInfo.Out.Result;

Using IBM i Spool File Collections

 50

A spool file collection represents a list of spool files on an IBM i system. There are 2 types of spool file

collections:

• Spool file collections for users

• Spool file collections for queues

As an example, let’s create a spool file collection for a user called DCXUSER.

After we save the model, we can access the spool file collection called DCXUSER through

context.SpoolFileCollections.

To iterate through the spool files in this collection:

foreach (SpoolFile spoolFile in context.SpoolFileCollections.DCXUSER)

{

 Console.WriteLine(spoolFile.JobName);

}

We can also reference the spool files by index.

SpoolFile firstSpoolFile = context.SpoolFileCollections.DCXUSER[0];

// Get the content of the spool file

String content = firstSpoolFile.Content;

Using IBM i Operating System Command

Let’s define a command called CopyFile that has 2 parameters:

• Path

• TargetDir

This command copies a file as specified in the Path parameter to the directory specified in TargetDir.

 51

This is how the command looks like:

Note that parameters are indicated by prefixing the parameter name with the ‘@’ character.

To execute the command:

context.OSCommands.CopyFile.Execute("/test/file1.txt", "/test2");

	What is LANSA Open for .NET 3.8?
	Why LANSA Open for .NET 3.8?
	What Will a Simple C# Code to Retrieve and Update an Employee Record Look Like?
	How is Coding Made Easier with LANSA Open for .NET 3.8?
	What Doesn’t LANSA Open for .NET 3.8 Do?
	Runtime Requirements
	Supported Visual Studio Versions
	Installing LANSA Open for .NET
	Components of LANSA Open for .NET
	Is Visual Studio Express Supported?
	A Glimpse of LANSA Repository Explorer and Data Model Editor
	Why Do We Have the Standalone Version of the Data Model Editor?
	What Does the Visual Studio Integrated Version Do That the Standalone Version Does Not?
	How Do I Start the LANSA Repository Explorer in Visual Studio?
	LANSA Repository Explorer
	How Do I Create a New LANSA Data Model File In My Project?
	Can We Add A Data Model (.lcm) to an ASP.NET Web Site?
	Can I Add a Data Model File to Any Project (Languages)?
	What If I’m Not Using C# or VB.NET?
	What Do I Do with the Data Model and How Can I Reference It from My Code?
	Enabling Commitment Control on the Server
	Synchronising Objects on the Data Model with the LANSA Repository
	What LANSA Open for .NET Assemblies I need to include when deploying my application?
	Establishing a Connection with a LANSA Server
	Creating a Master Context
	Creating a Child Context
	Retrieving Records
	Submitting Changes Back to the Server
	Inserting a New Record to a Table
	Populating Default values of Fields in a Data Object
	Deleting a Record
	Checking the State of a Data Object
	Submitting Changes to the Server, Catch and Display Messages when Errors Occur
	Submitting Changes to the Server & Resolving Update-conflict
	Getting the Server to Validate the Changes Made to Records Without Actually Committing the Changes
	Real & Virtual Table Columns
	Accessing a Column’s Multilingual Texts (Labels, Headings)
	Deleting Multiple Records
	Updating Multiple Records
	Beginning & Ending a Transaction
	How Do the LANSA Field Types Map to .NET Runtime Types?
	Data Context Advanced Options
	How to Assign a Database NULL Value to a Column in a Record?
	Accessing Original Values in a Data Object
	Getting Error Information From ApplyChangesException
	Handling Locking of Row before Update
	Serializing a Context
	Serializing Data Objects in a Context
	Turning On LANSA Connection Pooling
	DataContext Serialisation & Deserialisation
	Context’s Embedded Dataset
	Creating a Server Function Definition in the Data Model
	Invoking a Server Function
	Invoking a Server Function with List Parameters
	Using IBM i Spool File Collections
	Using IBM i Operating System Command

