LANSA OPEN FOR .NET 3.8

QUICK START GUIDE

What iS LANSA OPEN fOr (NET 3.8 ..ttt ettt ettt e et e et e et e e e e e ea e e et e e et e aeta e aannaeennaaeen 3
LT N SN @ o T= T o T {0 AN i I 7 S 4
What Will a Simple C# Code to Retrieve and Update an Employee Record LOOK LIKe?cccuviiiiiiiiiiiiiiiinnen. 4
How is Coding Made Easier with LANSA Open fOr .NET 3.87 .iuuiiiiiiiii e e e e e e e e e e e e e e e eaans 4
What Doesn’t LANSA Open fOr .NET 3.8 D07 ...cuuiiiiiiii e e ettt ettt e et e e e et e e et e e et e e et e e eaaaeanaaeen 6
U L 0] L= (T o [U = 0. =T £ 6
SuppPOrted Visual STUAIO VEISIONSuiirieeteeeie e et e et e et e e e e e e e e e e e et e e ea e e eaa e e an e e aaeeeaneeeaneeeanneeennerannnes 6
INStalling LANSA OPEN TOr LNET ...t ettt e et e e e et e e et e e et e e et e e ea e eea e e et e eanaeennnas 6
Components Of LANSA OPEN O INET ..ouuiiiiiiii e e e e e e et e e et e e e e e et e e e e e aa e e et e eean e e ean e eeneeannns 7
IS Visual Studio EXPress SUPPOITEA? ettt e et e et e et e e e et e e ea e e et e e et e eanaeannnas 7
A Glimpse of LANSA Repository Explorer and Data Model EQitOr............ovviiiiiiiiiiii e 9
Why Do We Have the Standalone Version of the Data Model EitOr?oooouiiiiiiiiii e 10
What Does the Visual Studio Integrated Version Do That the Standalone Version Does NOt?c.ccceeuvveennnns 10
How Do | Start the LANSA Repository Explorer in Visual StUIO?oiiuiiiiiiiii e 11
I N SN T o To 1 (o] A = {1 (o] (=] PPN 12
How Do | Create a New LANSA Data Model File 1N My ProjECE? ...ccuuveeiieiiiee e e e e e e 14
Can We Add A Data Model (.Ilcm) to an ASP.NET WeDb Site? ...t 15
Can | Add a Data Model File to ANy Project (LANQUAGES)?. ... ceuueernieeeuieeeueeeteeetaeeenaeeaneaeansesensereneeenneeeneanen 15
What If I'm NOt USING CH OF VB.NET 2 ...ttt ettt et et e et e et e e e e e e et e e et e e ea e e et e ean e eannnas 16
What Do | Do with the Data Model and How Can | Reference It from My Code?cvvveiiiiiiiiiiiieeiin s 16
Enabling Commitment CONrol 0N the SEIVET....... . e et e e e e e e aeen 18
Synchronising Objects on the Data Model with the LANSA REPOSITOIY........cvuuuiiiiieeeeeeiieeeie e eeeine e e eeneaees 18
What LANSA Open for .NET Assemblies | need to include when deploying my application?............ccccovvevneeenn.n. 19
Establishing @ ConNection With @ LANSA SEIVET ittt e e et e e e e e e e et e e e aeaaaeen 19
(01 g=T L d o = 1Y = 1) (= GO0 | = S 19
Creating @ CRIld CONTEXT e ettt e e et e et e et e e et e e e e e aa e e et e e ean e eeenaeennaeennaaeen 20
= L=V T T =Yoo o S 20
Submitting Changes Back 10 the SEIVEN e et e e e e een 21
Inserting a New RECOId 10 @ TabBIEccuuiii e e e e e e et e e et e e e e e e ea e e eaneeeanns 21
Populating Default values of Fields in @ Data ObJECT....... oo 22
D=1 =Y o = B =T o S 22
Checking the State of @ Data OBDJECT........iiee i e e e e e e e et e e e e e et e e e e e e eanen 22
Submitting Changes to the Server, Catch and Display Messages when Errors OCCUNcccuueveeniieineeenneeennnnens 23
Submitting Changes to the Server & Resolving Update-conflictccooeuiiiiiiiii e 24

Getting the Server to Validate the Changes Made to Records Without Actually Committing the Changes 25

Real & Virtual Table COIUMNSot e e e e e e e e e e e e e e e e e e eennnnaas 26
Accessing a Column’s Multilingual Texts (Labels, HeadingS)oeuu i 26
(DTS oY o Y 01] [=TT o S 27
Updating MUILIPIE RECOITS ittt et e e e e et e et e et e e et e e eaa e e etn e aeaneaennaaeen 27
Beginning & ENdiNg @ TranSaCTIONcuu ittt ettt e e et e et e e e e e et e eaa e e ean e aeanaaeanaaeen 27
How Do the LANSA Field Types Map to .NET RUNEIME TYPES? ..uuiiiuniiiiiieeieeeeeeeie e e e e e e e e et s e eee e e e e e e eeaeeeen 28
Data Context AAVANCEA OPLIONScuu ettt ettt e et et e et e e et e e e e e e e aa e e ea e e ea e aeea e eanaaeenneaeanaaennaanen 29
How to Assign a Database NULL Value to a Column in @ RECOMd?........uiiiuiiiiiiiiii e e e 35
Accessing Original Values in @ Data ODJECTcu. ittt e et et e e e e et e e e e eennas 35
Getting Error Information From ApplyChangesEXCEPTIONieuu i e e e e e e e e ees 36
Handling Locking of ROW Defore UPUALEooeei ittt et e e et a e e e e een 37
YT T 141 o = RO o] | = S 38
Serializing Data ObJECTS IN @ CONTEXE....iuuuiieiieiteeeie e e e e e e e et e e e e e e e et e e ean e e e e e eaeeeanseeanseeeneeenneanen 39
Turning On LANSA CONNECLION POOINGcvuiiii et e et e e e e e e e et e e ea e aeeans 40
DataContext Serialisation & DeSErialiSAtIONc..uuuuiiiie i e e e e e e e e ennneaas 41
Context’s EMDEUAAEU DALASETc.uueiiittieeeeit ettt ettt ettt e e et e e e e et e e et eta e e e e et e e e e een e e e e ern e e eeeenanes 44
Creating a Server Function Definition in the Data MOGElocouiiiiiiiiii e e 45
INVOKING @ SEIVEE FUNCLION ...ttt e et et e e et e et e e ea e e et e e e e eea e eeaneaeanaaeanns 48
Invoking a Server FUNCtion With LISt PArametersoieuuiiiiiiie e e et e e e e e e e e e e ea e eeanns 49
Using IBM i SPOOI File COIBCTIONSc.ueeiiei et ettt e e e e et e e et e e e e e e e e e aeaeeenaeaeen 49

Using IBM i Operating SyStem COMMIANG........ieuuiii ettt e e et e et e et e e et e e eaa e eea e aeaeaeanaanen 50

What is LANSA Open for .NET 3.8?

LANSA Open for .NET 3.8 is a LANSA Development Environment for .NET that is integrated with Microsoft
Visual Studio.
o It allows .NET applications to easily make use of the objects in a LANSA Repository (tables, functions,
validation rules, multilingual texts) in an object-based manner.

e It does not however allow the creation and modification of objects in a LANSA Repository.

.NET developers typically create a LANSA data model which specifies which LANSA objects they want to
make accessible from their .NET code. The LANSA data model file will be part of their C# or VB.NET projects
and behind the scenes LANSA Open for .NET (integrated into Visual Studio) will automatically create the classes
and methods that represent the objects in this model, which are immediately available for use from any .NET

code.

/Mudelz.lcm] -
B+ LAMSA Model
EI Tables
D epartment
Employes
Person
Section
=-E8 TSTABLET
-|E2 Logical Tables
=-1.¥ Functions
=-J4F CALC
% Local Fields
El@ Primitive Parameters
- @ TSFIELDA
o List Parameters
----- A Multilingual Texts
-2 | Languages
-5 Logical Locks
#-[57 Customer

L T TY H o T S

LANSA Open for .NET 3.8 consists of 2 main components:

e LANSA Repository Explorer
The Repository Explorer allows .NET developers to connect to a LANSA repository on a remote server
and inspect the objects defined in the repository and view/edit content of tables.

e LANSA Data Model Editor
The Data Model Editor allows .NET developers to visually construct a LANSA data model (LANSA tables,
server functions, etc) for their application. This is done by dragging LANSA objects from the Repository
Explorer and dropping them on the editor. When saved this visual representation of the data model will
be transformed automatically into .NET classes and methods (behind the scenes) and will be readily
available for use by the .NET developers. This in conjunction with Visual Studio IntelliSense makes

programming with LANSA objects much simpler and less prone to mistakes.

Why LANSA Open for .NET 3.8?

e Eliminates the need for .NET developers to use Visual LANSA, something they are not familiar with and will
require a considerable amount of time to get used to.
e It provides a programming model that .NET developers are familiar with.
e Effective collaboration between LANSA developers and .NET developers:
0 LANSA developers create a data model using standalone LANSA data model editor.
0 The data model will be passed to the .NET developers, which instantly allows the .NET developers

to easily access the defined LANSA objects from their .NET code.

What Will a Simple C# Code to Retrieve and Update an Employee Record Look
Like?

To give you a feeling of what you can expect from LANSA Open for .NET 3.8, here is a very simple example of
the usage of the data model after it is designed and saved. You don’t have to fully understand the code and
what it does, this is just to give you a taste of coding with LANSA Open for .NET 3.8. The classes and
properties such as Employee, FirstName, EmployeeCols are automatically generated for you behind the

scenes from the data model.

// Create a LANSA data context - this is always the starting point
DataContext context = new DataContext(true);

// Retrieving all fields of an employee with key field EMPNO = "A0070"
Employee employee = context.Employees.Retrieveltem(**'A0070");
Console_WriteLine(employee.FirstName);

Consolle_WriteLine(employee.Surname);

// Updating the name & salary of the employee
employee.FirstName = "Andrew';
employee.Salary += 10000;

// Commit the changes to the LANSA database
context.SubmitChanges();

// Retrieving all employees with salary bigger than 50,000
Employee[] listl = context_Employees._RetrieveList(EmployeeCols_Salary > 50000);

// Retrieving only Employee Number and first name fields of all employees
Employee[] list2 = context_.Employees.RetrieveList(EmployeeCols_EmpNo +
EmployeeCols_FirstName);

How is Coding Made Easier with LANSA Open for .NET 3.8?

o IntelliSense lets the programmers know what fields are available in a table & what operations can be

performed.

. = a1 | = =t Tt — "
B & S| T ook ook 52600 LR % b s

MainForm.vb* | Datamodel.lcm 4

x
(MainForm Events) j I-/ Load j
E L -_—
N

L'* This sample application demonstrates how to write a basic desktop applicat™ |

X3

E Publiz Class MainForm

Private masterContext Ls DataContext

Priwvate editContext As DataContext = Nothing
Private editMode Ls EBoolean = False

= Frivate Jub MainForm Load(ByVal sender is System.Chject, ByVal e L= 3yste

Dim columnsToRetrieve = Employeelols.

2 ADDRESS1
Me.employeeGridiView. AutoGeneratelo ﬁ ADDRESSZ
He.employeeGridView.DataSource = N ﬁ ADDRESS3
ﬁ Departrment
&y Ernployveeho
ﬁ FirstMarme
50 MNTHSAL
50 PHONEELS 4|L|
50 PHOMEHME
20 POSTCODE

|»

-

i s K A AL O e 3 O i A1

J Public Shared Readonly Proper
String)

4

Comman Al

¢ IntelliSense can quickly show the programmers what they can and can'’t do.

In this screenshot below, it shows that EmployeeNo is one of the keys in the table and we can find an

employee with a certain EmployeeNo.

“MainForm.vb* | DataModel.lcm * X
I # (MainForm Events) j I-/ Load j
=R — i; S_E
a
|"* Thizs sample application demonstrates how to write a basic desktop applicat™ |
LI 3 oo

[Public Class MainForm

Private masterContext As DataContext

Private editContext ALs DataContext = Nothing
Private editMode As Boolean = False

[S

= Private Sub MainForm Load(ByVal sender As 3ystemw.Chject, ByVal e As 3Jyste

masterContext.Employees.Fetrievelist |

abof &+ Retrievelist (exactKeyMatch As Boolean, Employeeho As String) As SimpleDesktopApplication, HR. Empl

Me.employeeGridiiew. AlutoGenerateColumns = False
Me.employeeGridView. DataSource = New Objecti(-1) {}

-

_'l_I

l |

e When you are trying to do something that is invalid, the compiler will alert you so that you don't have to

wait until you run your program to find out that you've done something wrong.

.g samples - Microsoft ¥isual Studio {(Administrator)
File Edit ‘Yew Refactor Project Build Debug DSL Tools Tesk Transformation Workflow DSL Designer AMTS Data Tools

N R = = I e Y R e R I L 0 2| 28
PR & S| W k[B R EFFEZI0PR8BE85 R
MainForm.cs* - X
v"[3Sim|3|eDesk.l:op.ﬂ.pplication.MainForm j I “ MainFormi{Util. ConnectionForm cf) -
private bool editMode = false; -
= public MainForm(Ucil.ConnectionForm cf) _l

{
| /¢ comparing salary with & string instead of a nunber

war condition = ExplovecsExprs,Salary > "EO0O00:
masterContext.Employees.Retrievelist (condition) ;

InitislizeComponent () ;

this.employeeGridView. AutoGenerateColumns = false;

thiz.emnloveeGridiView., DataSoTrce = new ohiectlO]: _ILI
»

4]

|JaJo|dxg Adoyzoday gS T | |xoqmol s::{.| |MQL|\ aIIN0Ea Y rE‘I| I

Error List
& 1 Error 1\ 0 Warnings (i) 0 Messages
| | Description | File: Line | Colurnn | Project
@ 1 Operator =" cannot be applied bo operands of kype MainForm.cs 27 Z0 SimpleDeskiopApplicatio
'LOpen.EntityModel. MumberExcpression<HR. Employvee »' n
and ‘skring'

What Doesn’t LANSA Open for .NET 3.8 Do?

It does not deal with Ul / form design. So you can't just drag a field from the repository onto a form and expect

a default visualization of the field to be created automatically for you as in Visual LANSA.

Runtime Requirements

.NET Framework 4.0

Supported Visual Studio Versions

« Visual Studio 2010
* Visual Studio 2012
« Visual Studio 2013
« Visual Studio 2015

Installing LANSA Open for .NET

Run the LansaNETInstaller.msi

% LANSA Open for .NET Setup =10l

Welcome to the LANSA Open for NET
LANSA Open .NET Sehup Wizard

The Setup Wizard wil install LANSA Open for .MET on your
computer, Click Mext ta continue or Cancel to exit the Setup
Wizard,

Back Cancel

Components of LANSA Open for .NET

{5 LANSA Open for .NET Setup =101 x|

Product Features

Select the waay wou wank Features ta be installed.

------ LAMSA Open For JMET
------- =+ | Wisual Studio 2005
------- =3 - | wisual Studin 2005

e (= = | Standalone LANSA Model Editor

This feature requires 20KE on wour hard drive, Ik has 3 of 3 subfeatures selected, The
subfeatures require 2154KE on wour hard drive,

Back. I Inskall I Zancel

There are two versions of the two tools mentioned earlier (LANSA Repository Explorer and Data Model Editor):
1. Integrated with Visual Studio
2. Standalone application
The two versions are exactly the same in terms of functionality (there are some minor differences related to
how the data model can be used in the code which will be discussed in the next section). The next section will
discuss the circumstances in which the standalone version is necessary or preferable to the Visual Studio

integrated version.

Is Visual Studio Express Supported?

No, however it does not mean that you cannot develop with LANSA Open for .NET 3.8 with Visual Studio
Express.

What you need to do when developing with Visual Studio Express:

1.
2.

3.

a LAMSA Momnnnenk Maodal Nacinnar

Use the Standalone Data Model Editor to create and edit the data model.

Build the data model into an assembly (DLL).

""" @ “. BuildModell.lem Fa Modell.lcm [Mew Document]

Madel lom* |

=+ LANSA Model

--{E8 Tables

--|E2 Logical Tables
E‘f Functions

----- A Multilingual Texts
..... .__1-;’. Logical Locks
-2 System Yariables
----- * Global Fields

-8 | Languages

=511 IBMi Objects

From Visual Studio Express, add the following assembly references to your project:
0 The data model assembly created in step 2.
0 LANSA Open .NET Entity Model assembly.

2§ Add Reference

MET |COM I Projects I Brotwse | Recent |

Component Mame -~ | Version | Funtirne | Path :l
e mimis :
3.0.0.0 w2,0.50727 CProgran
T REEERR R S S S e deidnlallsh el :
Microsoft S0L Mobile 9.0.242.0 w2.0.50727 liI:'l,F'r-:u;|r-a|rr_l
Microsoft System Definition Model Manager Inkerf.,. 1.0.5000,., +2.0,50727 C:\Program
Microsoft, AnalysisServices, AdomdClient 9.0.242,0 w2.0.50727 C\Program
Microsoft, Build, Conversion Z2.0.0.0 w2, 0.50727 CHindow
Microsaoft, Build, Conversion, v3.5 3.5.0.0 wZ,0,50727 CAProgram
Microsoft,Build. Engine Z.0.0.0 w2, 0.50727 CHOwindow
Micrasaft,Build. Engine 3.5.0.0 w2,0,50727 CAProgram
Microsoft, Build. Framework, 2.0.0.0 w2.0.50727 ChWindow
Microsoft, Build, Framework, 3.5.0.0 w2,0.50727 C\Prograr
:ﬂ'irrnqnﬂ'.Hl iild. TAsks ?.I'I.q.l'l w2 NL.5N777 I:':'l'-.-'u'inrllulll

CIE |

Zancel |

A Glimpse of LANSA Repository Explorer and Data Model Editor

20 EmployeeManagement - Microsoft ¥isual Studio - |EI|5|
File Edit Wiew Project Buld Debug Class Diagram DSL Designer DSL Tools Text Transformation ANTS Data Tools Window

Community Help

b b iE-E-EHE | % B R9- - F-5| b Debug - Any CPU - | % 3
m Lnr-r;‘._n Repository Explorer “Model? lcm Properties [E
W =- LAMSA Repository Explarer 21| B-L] LANSA Model = = I
2 B[] lansal7:5045 - DEM - ENG =-E8 Tables — =
o == localhost:4546 - DEM - ENG Department @=: = 3
i £-E3 Tables Emplopees gl
g DC@F23 (Function Defin Person g
?‘ DC@F26 (Swskem VYariabl Section Cl

3: DC@FED (Partition Langy e TSTABLE1
2 DC@WOS (L4W3 - Image - Logical Tables
=) DC@WOT (L4W3 - Web F =¥ Functions

DC@WAD (L4W3 - Banne =-1.¥ calc
DC@WL1 (L4W3 - Barne ..l 7¥ Local Fields
DC@W 12 (LS - LAMSE - @% Primitive Parameters
DC@W14 (Web Event Lir i TSFIELD

DC@x01 (%ML Page Hea
DC@HO2 (#ML Page Dete | G S Multilingual Texts
-8 DC@R03 (3ML Componer v 4| Languages

4 I I L3

&5 Refresh e R
S Delete
Errar Lisk
9 0Errars ||| 1\ 0 warnings [||(i) 0 Messages
| | Descripkion | File | L. | Colurnn Project

_'E, Error Lisk &Pending Checkins |5€J,Find Symbol Results

Ready 4

(Visual Studio Integrated version - left is the Repository Explorer, middle pane is Data Model Editor)

& LaNSA Component Model Designer Y [m]

File Build
EE LAMSA Repasitory Explarer 2| : Modell.lcm [Mew Document] #| Close Current Tab |
B[] lansal7:5045 - dem - eng
H i Fzz | &
= B Tables Madell lom" | E‘lj| =
5 DLC@F23 [Function Defini =L LANSA Model [Local Mame] DEPTAR
DC@F26 [System Variable =8 Tables (Plural Name]
DL@FED (Partition Langu. ==JDEFTAE Has RRND Cc True
DC@EWOE (L4w3 - Image -~ Logical Tables Has Linique K True
DC@WOS [LANSA for the {2 Functions Object Name | DEPTAE
DCEtw09 [L4wW3 -webF o A Multilingual Texts
DC@EW10 [L4w3 - Banne -2 | Languages
DC@W1T [L4W3-Banne ‘0 Logical Locks
DC@w12 [L4w3 - LANS: -] IBMi Dbjects
DCEw14 fwieb Event Lir
DC@Ew15 MWEB: browze -
4 | r
% Wieww Daka
S Delete
elE - :
- ame: Ype -
Object Mame DEPTAR DEPTAE Table
DEPTAB.DEPTDESC Column
- DEPTAB.DEPTMENT Column
Object Hame
DEPTDESC Field (Plural Name)
DEPTMENT Field
Miaeiraaesk Cerharaz LI

(Standalone version of LANSA Repository Explorer and Data Model Editor)

10
Why Do We Have the Standalone Version of the Data Model Editor?

The standalone version will come in handy when the person or group designing the data model is different from
the .NET developers who will be developing the actual application.
The rationale behind this:

1. For somebody to be able to construct a model of tables, server functions, and other LANSA objects,
they need to have good understanding of the objects.

2. This person will most likely be a LANSA developer, but not a .NET developer.

3. Since this person is a LANSA developer, most likely he or she will not have a Visual Studio installed in
his or her computer.

4. The standalone Data Model Editor enables the LANSA developer to create a LANSA data model, save it
as a data model file (.Icm), and then pass the file to a .NET developer who will then incorporate the
data model file into their .NET project. Once incorporated into the project, the .NET developers will be
able write C# or VB code that makes use the LANSA objects defined in the data model file.

The standalone Data Model Editor is also useful for somebody who does not have Visual Studio since the
standalone Data Model Editor is capable of generating a .NET assembly (DLL) from the data model file. This
assembly can be referenced from any other .NET applications thus providing access to LANSA objects defined in

the data model file.

What Does the Visual Studio Integrated Version Do That the Standalone Version

Does Not?

In the Visual Studio integrated version, it is possible to incorporate the data model file (.Ilcm) directly into
your .NET project (C# or VB.NET project) and behind the scenes the .NET classes and methods that
correspond to the objects in the model will be generated automatically every time the model file is saved.

Add New Item - WindowsFormsApplicationl

Templates:

Solution Explorer - WindowsFormsapplicationl - & =

= | & 2] &

% LANSA Camponent Madel I (o Solution "WindowsFormsapplication1' (1 project)

T Local Datebase =B windowsFormsapplication1
_-ELUEG| Database Cache [H- =] PerErtiES

‘Windows Farms leDI Parent Form

RE = Report [+~ [+3] References

REDEFF'”G] Report Wizard +- =] Forml.cs

- Workfiow [ZaResources File I I
i xl... I}
| | Service-based Database £ Madell.lcm
SsetingsFle [il “] Program.cs
;ﬁstyle Sheet
=| Text File LI

LANSA Component Model
Mame: Model2.lcm

Add Cancel

If you are using the standalone data model editor, before it can be used the editor will need to build the data

model file to produce a .NET assembly (DLL) that you need to reference from your own code.

11

How Do | Start the LANSA Repository Explorer in Visual Studio?

After installing LANSA Open for .NET, under the View menu in Visual Studio there will be a new menu item

LANSA Repository Explorer. Click on that item to open up the LANSA Repository Explorer tool window.

&9 Microsoft Yisual Studio

File Edit | Wiew iCIass Diagram DSL Designer DSL Tools Text Tr:

: | ® LAMSA Repository Explorer - - E
- ™
ﬁ 24 Server Explorer Chrl+w, L
%‘_é-" @ Solution Explorer ChrlHh, 5
=
1] n
o @ Class View Chrl, i
ot
g 0@ Code Definition Window — Ctrl+W, D
1]
%e =¥ Object Browser Chrl4,]
5) Error List Chrl+W, E
g OutpLE e+, O
[i properties Window ChH, P
A Task List Chrl+w, T

It will appear floating the first time it shows, dock it anywhere you like.

#. Microsoft ¥isual Studio

File Edit WYiew ClassDiagram DAL Designer DSL Tools Text Tre

i iE-EA-SHA | BRR|9--F

lanp:u:l %l A2uo|dx g Jaslas %II

|ﬂ 0 Errars || | 1\ 0 Warnings “ |{D 0 Messages |

| | Descripkion | File | L

LANSA Repository Explorer

2% WindowsFormsApplicationl - Microsoft Yisual

File Edit ‘jew Project Build Debug Data

Z-E-SH e %@ 9o

Hogian |

lq._;!j Mew Connection ...

_'a Errar Lisk

Itemis) Saved

Start by adding a new connection to the Repository Explorer. You can do this either by clicking on the New

Connection button in the bottom toolbar or by opening up the context menu (right-mouse click), then

selecting the New Connection menu item.

JRL=TEY
Server I Fort |0 -
Fartition I—

Language HAT

— Authenticatian

Ilzer Hame I

Paszward I

[T Save uzer name and paszward

k. I Cancel

The New Connection dialog box will appear, fill in your connection details then press the OK button. If you

12

are not involved in the administration of a LANSA server, you need to get the following details from your LANSA

administrator:

Server The name or IP address of the server where a LANSA listener is running.

Port The port number that a LANSA listener is running on. One server can have multiple LANSA

listeners running on different ports. The default port is 4545.

13

Partition A LANSA partition you are connecting to. There might be different partitions assigned for

development, testing, and production.

Language The LANSA language code for this connection. A LANSA language code is a three or four-
letter code that indicates a language (for example, ENG represents English language). A
LANSA partition can be defined as language-neutral or multilingual (supports various
languages). Multilingual partitions allow the storage of field descriptions (among other

things) in various languages.

Username A LANSA username and password for the connection.

and password

B" Functions

; & Multilingual Texts
=] System Yariables
t- ¥ Global Fields
J Languages

You now have one connection item in your LANSA Repository Explorer.
Try expanding the node. It should now attempt to connect to the LANSA server using the connection details
you specified. If it connects successfully, it will show Tables, Functions, Multilingual Texts, System

Variables, Global Fields and Languages.

Play around and expand those groups. When you click on an object, the details of the objects will be displayed
in the Visual Studio property grid. For example, expand the Tables node, look for the table DEPTAB (one of
the LANSA demonstration objects). Expand the Columns node and then click on the DEPTDESC node. Now

check out your Visual Studio property grid (if you can’t see your property grid it might be hidden), it should
show the details of the DEPTDESC column.

Properties

DEPTDESC Column -

Colurmn Type Real

Decimals]

Description Department Descripkion
Field Type Alpha

Lenqgth 20

Cbject Mame DEPTLESTC

Another handy feature of the LANSA Repository Explorer is its ability to view and edit records in a table. As an
example, go back to the DEPTAB table node. Notice that on the toolbar (or context menu) you can see the

View Data button.

LANSA Repository Explorer

= LAMNSA Repository Explorer -
-] LAMNSADF 4545 - DEM - ENG

-8 -

e == I {Sturg) View Data Ldler}

_ FPMOTE (Mokes File)
FPTAE {Code Table Data)

You can now browse the records in the table and edit them if you wish (notice the Edit button at the top).

DEPTAB LANEF\-UT]/ Madel Tukariall lcm]

: fu] Edic |
DEFTMENT | DEFTDESC GRAN

8 ADMINISTRATO... | 1

~ |awD INTERMAL AUDI... | 2
FLT FLEET ADMINIS .. |3
GAC GROUPACCOU.. |4
INF INFORMATION . |5
LEG LEGAL DEFART ... |6
MIS MANAGEMNT | |7
MKT MARKETING DE... |8
5D SALES & DISTRL.. |9
TRVL TRAVEL DEFAR... |10

How Do | Create a New LANSA Data Model File In My Project?

Open the Add New Item dialog box and choose the LANSA Component Model under Templates.

Add New Item - WindowsFormsApplication1 2=

po [oo
Cateqories: Templates: BE | A
T =
= wisual C# Items all =5 r
- Code — #LANSA Component Model J
- Data 2 LING bo SOL Classes
- General | || Local Database
- Web [ELocal Database Cache J
- Windows Forms @MDI Parent Form
- WPF |- ﬂ Report
- Reporting | Report \Wizard
LAMSA Component Model
Mame: I Modelz.lcm

add Zancel

15

1 - Microsoft Yisual Studio

Buld Debug Data Tools Test Window Help

 Ba @ |9 -0 - SH-E | b Debug = Any CPU
~ Modell.lcm
I:lll:lrEr T TTTTTTT T T TITI T T rrTT—

H Tables
--|E2 Logical Tables
E Functions
----- & Multiingual Texts
-2 | Languages
----- 31 Logical Locks

=5 IBMi Objects

-

‘.f;‘; Connect ko a server and refresh your objecks

- |

Solution Explorer - Window

2| @ F]

(o Solution "windowsFar
= [windowsForms
=d| Properties
[[References
& =] Forml.cs
- L% Modell.lom

- u:g Prograr.cs

Froperties

Document Schema

o=l =

You can now start dragging tables, functions, and multilingual variables from the LANSA Repository Explorer

and drop them on the data model editor.

Can We Add A Data Model (.lcm) to an ASP.NET Web Site?

We can only a data model file to an ASP.NET project, but not to an ASP.NET web site.

ASP.NET project is just like any other project and will be compiled into an assembly (DLL).

An ASP.NET web site is more like classic ASP in the sense that:

1. There is no project file that indicates which files should be compiled — all files under the application

directory will be included.

2. ASP.NET web sites are compiled on-demand automatically - there is no need to compile an ASP.NET

web site before running it.

If you'd like to use an ASP.NET web site instead of an ASP.NET project, you would need to create a separate

class library to host your data model file. Your web site will then have to reference this class library in order to

access the data model classes.

Can I Add a Data Model File to Any Project (Languages)?

You can only add a data model file to C# and VB.NET projects.

16
What If I'm Not Using C# or VB.NET?

If you are developing .NET applications in other languages, you need to create either a C# or VB.NET project in
your solution to host the data model file. Your other projects should then reference the C# or VB.NET project

containing the data model.

What Do I Do with the Data Model and How Can 1 Reference It from My Code?

Every time you save your data model, Visual Studio will automatically generate the classes and methods that
represent the objects (and supported operations) in the model. Your code will make use of these classes and
methods to perform necessary operations such as retrieving records and executing server functions.

The single point of access to the objects in the data model is the context object. By default, the class will be

named DataContext (unless you change it in the model properties as illustrated below).

Properkies

Document Schema -

Context Class Mame DakaiZonkexk I
=

Default Include Field Help Text False

Default Mulkilingual Yariable Resource Tvpe Embedded

rodel Wersion 1.0.0.0

Mamespace Maodel

We start always by instantiating the context.

DataContext masterContext = new DataContext(false);

Think of a context an in-memory representation of the database. Records that are retrieved from the server will
become data objects in the client machine’s memory and these data objects are managed by the context.
When a context is updatable, it will automatically keep track of the changes made to any data objects (and
also when we create or delete data objects). Remember though that any changes we make to the data objects
are happening in memory only and will not be committed to the database until we ask the context to do so by
invoking the SubmitChanges method. Once SubmitChanges is called, any changes we made to the data

objects in the context will be committed to the database on the server.

There are two types of context: master (main) context and child context. A context can also be updatable or
read-only. Generally an application would have one instance of master context that will last for as long as the

application is running. A master context would generally also be created as a non-updatable context.

When your application needs to retrieve some records off the server and it does not have any intention of
modifying the data, the master context will generally be used to retrieve those records. For example, when
your application needs to retrieve a list of available departments in an organization to populate a dropdown, it

should use the master context to retrieve those departments.

17

Child contexts, on the other hand, represent units of work that involve updating the database on the server.

They are created whenever a unit of work starts (generally when a record or a set of records are retrieved from

the server) and disposed when the work ends (generally when the record is not required anymore).

Note that a child context is lightweight and not expensive to create. There is no performance penalty in

repeatedly creating and disposing child contexts.

A typical use of child contexts would be the retrieval (and update) of information on a data entry screen. The

following scenario illustrates the common use of child contexts. Imagine that a user of a HR application needs

to update some details of an employee.

e The application displays the list of employees (master context should be used to retrieve the list).

Search |

Find employees that have a surname that beaing with IB

Employes Mo
A103

| First M ame
JOHM

YEROMICA

| Surname

BROWM

| Department

| Section

431 YEROMICA BROWMNS IHF Cv
43339 VEROMICA Ann | BROWNS IMF o
A0072 YEROMICA Ann | BROWNS IMF ov

YEROMICA

BROWMNSS

o After the user selects the target employee, the application should then display the employee's details

on a data entry screen. To achieve that, the application should create a new child context and use it to

retrieve the employee record. A new child context should be created the retrieved employee record can

be updated by the user, which means that we need an updatable context to handle this record.

Employee Mumber:

Surname:

Given name:
Street Address:
Suburb or Tawn:
State and Country:
Zip/FPozt Code:

Haome Phone Mumber:

Buszinezz Phone Mumber:

Start Date:

T ermination Date:;
Department Code:
Section Code:;

5 alany:

I.-'l'-.EIEI?EI

|BROWNS

[VERONICA,

I'I 2 Railway Street

|Baulkham Hills

M5W Australia

2153 —

|102) 9609 4627

|102) 9647 2785

{90028

=
[=

[INF

[Dn

|5000.56 —

18

e The record will be retrieved from the server and made available locally in the context as a data
object. The application binds the data object with some Ul controls to display the information and allow
the user to modify some fields. The context will automatically track any changes made to the data
object.

e When the user presses the 'Save' button, the application simply needs to call the SubmitChanges
method of the context to seamlessly apply the changes made in the application to the database on the
LANSA server.

e This current child context will be discarded when the user retrieves a different record from the server

(and a new child context should be created and used to retrieve the record).

Enabling Commitment Control on the Server

To ensure the integrity of the data when performing updates, it is important that all LANSA tables involved in
the updates have their commitment control turned on and auto commit turned off. When the
commitment control for a table is turned on, the table will participate in transactions (changes to the table

can be rolled-back). These settings can be found on the File Attributes tab on the Visual LANSA IDE.

PSLMST -
—File libraty: =
| DC@DEMOLIE

—Record Format nam
EE

—Ti2 module libraty
(#] Same library as file (F)

) Partition madule library (M)

—Alkernate collating tabl

—Options
[" Enabled for ROMLY

[share

[securs

[+ Strip debug

[Suppress IOMOO34

[Ignore decimal daka ervar
[+ 10M required

[C Create batch control

[System i high speed table
[/ st RRM generatian

[¥ Create RRMG colurn

¥ Convert special characters in field names

HZommit opkions
¥ o

[Auto commit

Synchronising Objects on the Data Model with the LANSA Repository

If the structure of an object is changed in the LANSA repository, you need to synchronise your data model with
the LANSA repository. For example, if a new column INITIAL is added to the table PERSONNEL in the LANSA

repository on the server and you have this table in your data model, you need to synchronise your data model.

19
To do this use the Connect to a server and refresh your objects button as illustrated in the following

screenshot (note that you need to have the LANSA Model node as the active node in order to see the button):

ModelTutoriall.lcm v X
LANSA Model
Tables
Department [Department code table]
Event [Persannel Event Lag)
Perzon [Perzonnel]

PerzonSkill [Perzonnel zkillz]
Section [Section code table]
Skilcode [Skill code table]
Timesheet [Personnel time sheetz)
#-[EE Logical Tables

ET Functions

-4 Multiingual Texts

+-{31 Logical Locks

----- 2/ Swstem ¥Yariables
i Clobal Eiclde

=

Languages

Ao o -
B

£

. Comnect to & server and refresh your objects

What LANSA Open for .NET Assemblies I need to include when deploying my
application?

You need to include only EntityModel.dll, which can be found in the bin folder of your project, along with

your other assemblies (after your project has been compiled).

Establishing a Connection with a LANSA Server

// Specify most details in the Settings object
masterContext.Settings.Server = "LANSAOQ7";
masterContext.Settings.Partition = "DEM";
masterContext.Settings.PortNumber = 4545;

// Connect

masterContext.Connect(‘'username', '‘password™);

// We can also specify all settings (except language) in the Connect method
context.Connect("'LANSAQ7', 4545, "DEM', '‘username', '‘password™);

Creating a Master Context

A master context is generally read-only (non-updatable). This is indicated by the fa/se parameter passed to the

constructor.

DataContext masterContext = new DataContext(false);

20
Creating a Child Context

// The first parameter is the parent context (master context).
// The second parameter “true” indicates that this context is updatable.
DataContext childContextl = new DataContext(masterContext, true);

Retrieving Records

Assume that we have a table called Person in our data model and its plural name is Persons that maps to the

table PSLMST which is part of the standard LANSA demo.

Person[] personList = masterContext.Persons.RetrievelList();

The code above will retrieve all records in the PSLMST table (all columns will be retrieved).
If we want to retrieve only the FirstName (GIVENAME) and Surname (SURNAME) columns, here is how we
do it:

Person[] personList = masterContext.Persons.RetrievelList(PersonCols.FirstName + PersonCols.Surname);

When we want to retrieve only persons whose salary is greater than 50,000:

Person[] personList = masterContext.Persons.RetrievelList(PersonExprs.Salary > 50000) ;

Note how columns of the Person table are referenced through PersonExprs (as opposed to PersonCols)
when used in an expression.

PersonExprs includes only real columns, whereas PersonCols includes real columns and virtual columns.
(virtual columns are columns whose values are derived from real columns). The implication of this is that you

can only use real columns but not virtual columns in your conditional expression.

If we want to retrieve only persons whose salary is between 50,000 and 100,000:

var condition = (PersonExprs.Salary > 50000) .And(PersonExprs.Salary < 100000);
Person[] personList = masterContext.Persons.RetrievelList(condition);

Notice the use of the ‘And’ operator. The ‘Or’ operator can be used in the same way.

We can also search for records that match certain keys. For example, the key column of the PSLMST table is

EMPNO (assume local name is EmployeeNo). The RetrievelList methods will look like this:

RetrieveList(bool exactMatch, string EmployeeNo)

21

The exactMatch parameter works like this:

e If set to true, the key values have to match exactly,

e If set to false, partial matches are accepted.
For example, if exactMatch is false, a search for EmployeeNo = "Al1" will match records with EmployeeNo
A1001, A1002, and A1003.

// Exact match: the following will return only employee with EmployeeNo = ""A1001"
Person[] personListl = masterContext.Persons.RetrieveList(true, "A1001");

// Partial match: the following will return employees whose EmployeeNo starts with "A1"
Person[] personList2 = masterContext.Persons.RetrieveList(false, "Al™);

Use the Retrievel tem method to retrieve just the first item. Note however that Retrievel tem supports only

exact matching.

// Retrieve the first person whose employee no is "A1001".

// Notice that we don’t need to specify exact/partial matching as it’s always
// exact matching.

Person person = masterContext.Persons._Retrieveltem("*A1001");

// Check for null reference (null is returned if the record can’t be found)
if(person I= null)

{
/7 ...

Submitting Changes Back to the Server

Remember that any changes made to the data objects will not be committed to the server until

SubmitChanges is invoked.

context.SubmitChanges();

SubmitChanges does three things:
e Updates existing records that correspond to modified data objects in the context.
e Creates new records that correspond to newly instantiated data objects in the context.

e Deletes records that correspond to deleted data objects in the context.

Inserting a New Record to a Table

// Create a new "Person” data object
Person person = new Person();

22

person.EmployeeNo = "A9001";
person.FirstName = "Andrew";
person.Surname = "Johnson"';

// The context needs to be aware of this new person data object,
// so that later when we ask the context to submit all changes
// to the database, the new person will be included.

// So we attach the new data object to the context.
context.Attach(person);

// At this stage, the person data object exists locally iIn the context.
// To actually create a new person record on the server,

// we need to call SubmitChanges.

context.SubmitChanges();

Populating Default values of Fields in a Data Object
When we create a new data object, most of the time we want to populate the fields in the data object with
their default values (fields have their default values defined in the LANSA Repository). For example, an

employee’s start date field might have a default value of today’s date.

Person person = new Person();

// Populate the default values of fields in the person data object
context.SetDefaultValues(person);

Please note that SetDefaultValues requires an online data context (that is, it has to be connected to a LANSA

server).

Deleting a Record

// Indicate to the context that the specified person should be deleted
// the next time SubmitChanges is called

context.Delete(person);

// At this stage, the person record has been marked for deletion.
// We need to call SubmitChanges to actually delete the record on the server.

context.SubmitChanges();

Checking the State of a Data Object

A data object can have one of these 6 states:

State Context Type Description

Detached N/A The data object has not been attached to any

context.

23

A data object that has just been instantiated will

have this state.

New Updatable

The data object is attached to an updatable context
and it does not correspond to any record yet on the
database on the server. When SubmitChanges is

called, a new record will be created.

Unmodified Updatable

The data object corresponds to an existing record on
the database and no changes have been made to it

locally.

Modified Updatable

The data object corresponds to an existing record on
the database and some changes have been made to
it locally (but the changes won't be made to the
database on the server until SubmitChanges is

called).

Deleted Updatable

The data object corresponds to an existing record on
the database and it has been marked for deletion.
When SubmitChanges is called, the actual record on

the server will be deleted.

Readonly Non-updatable

The data object is attached to a non-updatable
context. This is the only state that non-updatable

data objects can have.

To get the state of a context, use the GetObjectState method of the context instance:

Employee employee = new Employee();

DataObjectState state = context.GetObjectState(employee);

Submitting Changes to the Server, Catch and Display Messages when Errors

Occur

try

context.SubmitChanges();

3
catch (ApplyChangesException exception)

{

StringBuilder messageBuilder = new StringBuilder();

// iterate through each error encountered

foreach (DataObjectErrorinfo error in exception.Errors)

{

string message = error._Message;
messageBui lder.AppendLine(message);

24

// show the error
MessageBox.Show(messageBuilder.ToString());

Submitting Changes to the Server & Resolving Update-conflict
A record encounters an update conflict if after we read the record off the server and before we have a chance
to submit our changes back to the server, either:
e Somebody else deleted the record on the server.
e Somebody else has changed some values that we are also changing (for example, we are changing
the first name field and the other party is also changing the first name field).

An update conflict needs to be resolved before another attempt is made to submit our changes to the server.

// We need to repeat the call to SubmitChanges when conflict has been resolved.
// Use do-while construct to repeat when necessary.
bool repeat;
do
{
// Do not repeat SubmitChanges if there is no conflict
repeat = false;

// Apply changes to the server
try
{
context.SubmitChanges();
}
catch (ApplyChangesException exception)
{
// Each ObjectChangeConflict represents a conflict information for a record
foreach (ObjectChangeConflict changeConflict in exception.ChangeConflicts)
{
// Handle the "Person® record
if (changeConflict.Object is Person)
{

Person person = (Person)changeConflict.Object;

// Check if the person has been deleted from the database?
if (changeConflict. IsDeleted)

{
// Inform the user that the person no longer exists on the server
// Nothing else can be done after that
string message = "Employee {0} has been deleted from the server.';
message = string.Format(message, person.EmployeeNo);
MessageBox.Show(message) ;

}

else

{

string message =
"Employee {0} has been modified by somebody else, " +
""Keep your changes and discard the other changes?";

25

message = string.Format(message, person.EmployeeNo);

// Ask the user which values to keep
var buttons = MessageBoxButtons.YesNo;
DialogResult answer = MessageBox.Show(message, ''Update Conflict', buttons);
if (answer == DialogResult._Yes)
{
// Keep our changes and discard other person®s changes on the database

changeConflict.Resolve(ConflictResolveMode .KeepCurrentValues);

3

else

{
// Discard our changes and keep the other person®s changes on the database
changeConflict.Resolve(ConflictResolveMode.OverwriteCurrentValues);

b

// Must repeat the submit changes after conflict has been resolved
repeat = true;

}
} while (repeat);

Getting the Server to Validate the Changes Made to Records Without Actually
Committing the Changes

Use the ValidateChanges method of the context object

DataValidationResult result = context.ValidateChanges();

// Check if validation is successful or not?
if(result. IsSuccessful)
{
// "lInvalidObjects' property gives us the list of each data object that fails the validation.
foreach (DataObjectErrorinfo errorinfo in result.InvalidObjects)
{
// The "Columns® property of the error info tells us which columns
// contain invalid values
string message = "The following fields contain invalid values: "
foreach (Column column in errorinfo.Columns)

{

message += '\n" + column.Label;

// The "Errors® property gives us the list of validation messages
message += "Error messages:'';
foreach (Error error in errorinfo.Errors)

{

message += '\n" + error.Message;

//

MessageBox.Show(message) ;

26

Real & Virtual Table Columns

A LANSA table’s columns can be either real or virtual.

MPOPFE {MPD FILE B)
MPDSTA (Stake)
PABFILE {pab test File)
PSLEVEMT {Personnel Event Log)
PSLMST (Personnel)

- * Columns
-mﬁf EMPMNO (Emploves Mumber)

----- # SURMAME (Emploves Surname)

----- # GIVEMAME (Emplovee Given Mamels))

----- ® ADDRESS (Skreet Mo and Mame)

----- * ADDRESSZ (Suburb or Town)

----- #* ADDRESSS (Sktate and Country)

----- ¥ POSTCODE (Post | Zip Code)

----- # PHOMEHME (Home Phone Mumber)

----- # PHOMEBUS (Business Phone Mumber)

----- ¥ STARTOTER (Start date (¥YMMDD))

----- # TERMDATER (Termination Date {YMMODY
----- # DEPTMENMT {Department Code)

----- # SECTION (Section Code)

----- ® SALARY (Emploves Salary)

~AJ| STARTODTE (Start Date (DDOMMYYY)

lﬁj TERMDATE { Termination Date (DOMBY)
ACH MMTHSAL (Manthly Salary)

=-[E5 Logical Tables

- Relations

P3LSKL (Personnel skills)

PSLTIMES {Personnel kime sheets)

A

Real Columns

Virtual Columns

A

el ==

A real column is a column that physically exists on the table and stores a value. A virtual column does not

physically exist on the table, and its value is derived or calculated from other columns in the table.

Accessing a Column’s Multilingual Texts (Labels, Headings)
There are 2 ways of referencing a column of a table. Let's use the Person table and EmployeeNo column as
an example.

The first way to reference the EmployeeNo column is through the PersonCols class (context-less column):

var employeeNoCol = PersonCols.EmployeeNo;

The second way to reference the EmployeeNo column is through the context's Persons entity (context-aware

column):

var employeeNoCol = context.Persons.Columns.EmployeeNo;

27
It's fine to use either way if we just want to specify which columns to retrieve when requesting some data off
the server. However if we want to access the multilingual texts of the column we have to use the context-
aware columns (since the texts returned will depend on the language currently used).

So if we try to do the following, an exception will be thrown.

string label = PersonCols.EmployeeNo.Label;

The right way to get the label of the column is one of the following two ways:

string label = context.Persons.Columns.EmployeeNo.Label;
string label = context.Localized[PersonCols.EmployeeNo].-Label;

Deleting Multiple Records
To delete several records at once, use the DirectDelete method.
Important note: DirectDelete operates directly on the database on the server — records are deleted right

away, not when SubmitChanges is called (no call to SubmitChanges is required).

To delete all employees in AUD department:

context.By DeptEmployees.DirectDelete(""AUD™);

To delete all employees with salary greater than 50,000:

context.Employees.DirectDelete(EmployeeExprs.Salary > 50000);

Updating Multiple Records

To update several records at once with the same values, use the DirectUpdate method.

Important note: DirectUpdate operates directly on the database on the server — records are updated right
away, not when SubmitChanges is called (no call to SubmitChanges is required).

Unlike DirectDelete, DirectUpdate does not support expressions.

To update the salary of all employees in AUD department to 50,000:

Employee values = new Employee();
values.Salary = 50000;
context.Employees.DirectUpdate(values, EmployeeCols.Salary, "AUD");

Beginning & Ending a Transaction

Transaction can be started by invoking the BeginTransaction method of the context object.

28

context.BeginTransaction();

Ending a transaction is done by invoking either CommitTransaction or RollbackTransaction.

// Commit
context.CommitTransaction();
// Rollback

context.RollbackTransaction();

Notes:
¢ SubmitChanges method automatically starts a transaction before it begins applying changes to the
database. If no error occurs, it will automatically commit the changes, otherwise a rollback will be
performed.
e In order for a database table to support this transaction, it needs to have its commitment control

turned on. Please see the section Enabling Commitment Control on the Server for further details.

How Do the LANSA Field Types Map to .NET Runtime Types?

LANSA Field Type .NET Runtime Type Overridable in the Model?
Signed Decimal Yes
Packed

(where decimals > 0)

Signed Int64 Yes
Packed

(where decimals = 0)

Integer Int64 Yes

Float Double Yes

String
Alpha
Nchar
NVarChar
CLOB
BLOB

String No

Date DateTime No
Time

DateTime

Binary Byte[] No

Varbinary

Boolean Bool No

29

The .NET run time data type mappings for numeric fields can be overridden in the model by selecting column

and changing its CLR Data Type (Base Field) property:

Properties

Person.SALARY Column -

Base Field SALARY
Colurnn Type Real
Decimals 2
Default Yalue *ZERD
Descripkion Emploves Salary
Edit Mask, 1
Field Tvpe Packed
Length 11

B Local
(Local Mame) SOLARY

—flecans Eaaditiite

LR Data Type (Base Field) Defaulk
Excluded From Update Conflict Detection &

Int&4

Ink1é
Ink32
Single

[LR Data Type (Base Field) Double

ndicates the CLR data kvpe for the base field o| Decimal
hen you change this property it will affect okhsgyte

SByte

Data Context Advanced Options

The properties that control the behaviour of the data context reside in the Options object in the data context.

Code example to change the property PerformBasicDataVal idation:

DataContext context = new DataContext(true);
context.Options.PerformBasicDataValidation = false;

Below is the list of the available options and their descriptions.

RowldentityType Indicates the identity system to use to identify data rows.
Data rows can be identified using either their Relative Record

Numbers (RRN) or their primary keys.

Relative record number: a relative record number identifies the
positions of the records relative to the beginning of the file. For

example, the relative record numbers of the first, fifth, and

30

seventh records are 1, 5, and 7, respectively

Generally speaking, RRNs should be used whenever they are
available, however there are circumstances when it is
recommended to use primary keys instead of RRNs. An example
would be when providing an offline data entry support. In this
case, a context or data object is serialized and then stored for an
extended period of time on the user's local computer harddrive.
Since an RRN of a record in an IBM i database table is not
guaranteed to remain the same (reorganization of the tables might
change RRNSs), it becomes necessary to identify records using their

primary keys instead.

In an IBM i system, all tables will have RRN. This is however not
the case in a Microsoft Windows system where the existence of an
RRN column in a table is an option that can be set by the creator
of the table (through Visual LANSA IDE).

RowldentityType can be set to either:
e UseRelativeRecordNumberWhenAvailable
The Relative Record Number (RRN) should always be used
as a row's identity when the table support RRN, otherwise
use the table primary keys.
o AlwaysUsePrimaryKey
Primary keys should always be used as identity regardless

of whether the table supports RRN or not

PerformBasicDataValidation

Indicates whether basic data validations should be performed on
the client before data is submitted to the server.

Basic data validations are simple and automated validations that
are performed based on each column’s input attributes and data
type as defined in the LANSA repository.

Note that custom validation rules defined in the repository are not
part of the basic data validation (custom validation rules are

imposed on the server, not on the client).

About Input Attributes

Any LANSA field defined in the repository has a set of input
attributes that constraint the kind of value that the field can
contain. For example, we can indicate that a SURNAME field

should always have a value.

31

PerformBasicDataValidation can be set to either true or
false.

The list of checks that are performed in a basic data validation are
as follows:

e If the field does not allow blank value, check that the
value of the field is not blank.

o If the field is marked as containing an IBM i object name,
check that the value of the field is a valid IBM i object
name.

o Ifitisindicated that the value of the field should occupy
the entire field length, check that the length of the value is
the same as the maximum length of the field.

o If the field is marked as unsigned, check that the value is
not negative.

e Check that the length of the value does not exceed the
maximum length of the field.

e Check that the number of decimal digits does not exceed

the maximum allowed.

PerformServerValidationOnSubmitChanges

Indicates whether data validation on the server should be
performed on all changed records as a whole before modifying
the records on the database.
Note that server validation will always be performed regardless of
whether this property is set to true or false, it's just a matter of
when the validation will be performed.
To illustrate the difference better, imagine that we have 2 records
to update. Notice the sequence of events for each case.
With PerformServerValidationOnSubmitChanges property
set to false:

1. Validation of record 1

2. Update record 1 on the database

3. \Validation of record 2

4. Update record 2 on the database
If step 3 fails, step 2 would have been performed which means
record 1 would have been updated on the database. If the
particular table does not support commitment control, the
runtime does not have any way to rollback the changes made in
the step 2 and the integrity of the database could be

compromised.

With PerformServerValidationOnSubmitChanges property

32

set to true:
1. Validation of record 1
2. Validation of record 2
3. Update record 1 on the database
4. Update record 2 on the database
If step 2 fails, no records will have been updated so the integrity

of the database has not been compromised.

Enabling PerformServerValidationOnSubmitChanges might
have performance impact, however it should be negligible on most
cases and it is recommended that you enable this property at all

times.

CheckUpdateConflicts

Indicates whether to detect if update conflict is present when
trying to update a record.

An update conflict is present if the runtime finds that the
record was updated by another entity (another instance of the
application for example) between the time the record was

retrieved and the time the update request was made.

If CheckUpdateConflicts is set to true, the runtime will detect if
such conflicts are present and raise an exception if conflicts are
found.

Conflicts must be resolved (either by discarding the current value
in the memory or the current value in the database) before

another attempt at the update can be made.

UpdateModifiedColumnsOnly

Indicates whether only columns (and by implications objects) that
are modified (in memory) should be submitted for update. For
most cases, it is sufficient and recommended to update only
modified columns, however there might be times when you might

prefer to update all columns (set this property to false).

For example, we retrieve a record from a table called Person

Person person = context.Persons.Retrieveltem(..)

We change only the Salary column & call SubmitChanges

(UpdateModifiedColumnsOnly is true)

33

Person.Salary = Person.Salary * 1.05;
context.SubmitChanges();

Since UpdateModifiedColumnsOnly is true, the runtime will try
to update only the Salary field and completely ignore other fields.
This means that update-conflict check will only be performed on
that field.

If in the meantime, somebody else changes say the Postcode field
of that person, you will not be aware of it as no update-conflict will

be raised.

Please note that setting UpdateModifiedColumnsOnly to false
could carry a performance penalty on updating records, especially
if there are many records in the data context (remember that the
runtime will have to go through all records in the data context
even for those that have not been modified since the runtime has
to compare the in-memory values with actual values of those
records in the database).

It is therefore important to make sure that you dispose or clear
your data context whenever you are retrieving a new set of
records to ensure that only records that are relevant to the current

unit of work are present in the data context.

DataSource

Indicates where data is coming from when retrieving data (using

RetrievelList or Retrieveltem operations).

There are 2 possible values:

¢ Database
The records will be retrieved from the database on the
server.

e Dataset
The records will be retrieved from the context's embedded
dataset. A context's embedded dataset is accessible
through the DataSet property of the data context (e.g.

context.DataSet).

The DataSource property is useful when your application
supports offline mode. This way you can use the same fragment of
code to retrieve your records for both offline & online mode, you
just need to set the DataSource property accordingly (Database

for online, Dataset for offline).

34

ListAutoLoadEnabled

Indicates whether child list should automatically be populated
when any operation is performed on the list for the first time (for

example when the Count property is accessed).

AttemptUpdateLockingWait

Indicates how long (in milliseconds) the runtime should wait when
trying to acquire an update lock for a data row before it gives up
and generates an error.

The runtime locks a data row before it proceeds with the change
conflict detection to ensure that nobody updates the row while the

change conflict detection is performed.

AutoDeleteDependentRecords

Indicates whether child records should automatically be deleted
when the parent record is deleted.

Child records are records whose foreign key values are set to the
primary key values of the parent record. The parent table has a 1-
to-N relationship with the child table.

Enable the use of this feature with care.

To illustrate the use of this property, imagine we have such tables
in our data model. Notice that the Employee table has a

relationship with the Skills table (1-to-N).

= LANSA Model
=-E3 Tables
Department [Department code table]
Employes [Perzonnel]
#-4- ¥ Columng
=& Relations
: - ciated skill detailz]
=- Section [Section code table]
=-EE Logical Tables
{2 Functions
----- 2 Multilingual Texts
----- -1 Logical Locks
----- =] Syztem Yariables
----- * Global Fields
#-# | Languages
=51 IBMi Objects

On the LANSA Repository, there is a validation rule defined that
prevents an Employee record who has Skill records associated
with it from getting deleted.

This means that if we want to delete an Employee record that

has some Skill records associated with it, we need to delete the

35

Skill records first.

To let the runtime do this automatically for us, we can set
AutoDeleteDependentRecords to true. But note that we also
need to set the PerformServerValidationOnSubmitChanges
to false, otherwise the validation phase will always fail since the
runtime will have not deleted the associated Skill records in the
validation phase (the validation phase has no way of knowing that

the runtime is intending to delete the Skill records).

How to Assign a Database NULL Value to a Column in a Record?

If a column in a database table is nullable (a column is nullable if the LANSA field it is based on has an input
attribute ASQN which stands for Allow SQLNULL).

If the data type of the column is not alphanumeric, it will map to a value-type CLR data type (such as Int32,
Double). Since these types cannot be set to null, the LANSA Open for .NET runtime needs to use special values
to indicate that we want to set those columns to database NULL when saved to the database.

By default the special values representing the database NULL are the MaxValue of the data type for value-
type and null for reference type. For example, to indicate that we want to assign a database NULL value to

the Person.TerminationDate (DateTime) column and also to the Person.Notes (string) column:

Person person = ...
person.TerminationDate = DateTime.MaxValue;
person_Notes = null; // string is reference type so set to null

// When we call SubmitChanges, both the TerminationDate and Notes column of this record
// will be set to NULL on the database
context.SubmitChanges();

We can change the special values that indicate database NULL to something else. We do that by using the

static method SetDbNullValue of the Context class. Example of usage:

// To set the database NULL value of Int64 value to Int64._MinValue
Context.SetDbNul IValue(typeof(Int64), Int64.MinValue);

Accessing Original Values in a Data Object

Original values are values that are retrieved from the database. To find out the original values, use the

OriginalValues property of the data object (it contains properties; each represents a field in the data object).

Code example:

36

Person person = context.Persons.Retrieveltem(...)

// Modify the Salary field of the person
person.Salary = person.Salary * 1.05;

// Get the original value of the Salary field as retrieved from the database

var originalSalary = person.OriginalValues.Salary;

Getting Error Information From ApplyChangesException

ApplyChangesException is the exception that is thrown when an attempt to update records on the server’s

database failed (through the call to the data context’s SubmitChanges method). An attempt to update records

could fail if:

e Basic data validation (client side validation) failed.

e Server-side validation failed.

e Update conflicts are present.

e A fatal error occurs on the server.

An ApplyChangesException object has two properties that tell us more about the nature of the problem:

e Errors (Collection of DataObjectErrorInfo)

A collection of error information items. Each item is associated with a data object and it contains the

details of the error that occurred for that data object.

e ChangeConflicts (Collection of ObjectChangeConflict)

A collection of update conflicts. Each item is associated with a data object and contains the details of

the update conflicts that are present for that data object.

Each item in the Errors collection is a DataObjectErrorinfo object, and it has the following properties that

describe the error that occurred for a data object:

Object Reference to the data object that the error was caused by.
ErrorReason Indicates the cause of the error. Possible values:

e PrevalidationError: some values in the data object failed the basic
validation (client-side validation).

e ValidationError: the data object failed the server side validation.

o KeyAlreadyExists: this error occurs on the insertion of new record. It
indicates that there is already another record in the database with the
same key values as the new record we are trying to insert.

Columns When the cause of the error is either PrevalidationError or ValidationError,

this property will contain the columns that failed the validation.
If the error is caused by PrevalidationError, information on the reason the

validation failed can be retrieved from the PrevalidationColumnErrors property.

PrevalidationColumnErrors

When the cause of the error is PrevalidationError, each item in this list contains

37

the reason the validation failed for the column specified in the Columns list on the

same index (PrevalidationColumnErrors[i] corresponds to the column specified in

Columnsli]).

Errors List of detailed error messages.

Message All error messages as one string (multiline, each error message is placed in a new-
line).

Each item in the ChangeConflicts collection is an ObjectChangeConflict object, and it has the following

properties that describe the update-conflicts that occurred for a data object:

Object Reference to the data object that caused the update conflicts.

IsModified Indicates if the conflict occurs because some columns have been modified on the

database since they were last read by this application.

IsDeleted Indicates if the conflict occurs because the actual database row that corresponds to

this data object has been deleted.

MemberConflicts List of items, each item provides information on each individual column that caused an
update conflict.
Each item is a MemberChangeConflict object and contains the following properties:

e Column: indicates the column that causes this conflict. You can use the
properties of the column (such as Description) to display meaningful
information for the users of the application.

e OriginalValue: the original value of the column (as retrieved from the
server) by this application.

e CurrentValue: the current in-memory (local) value of the column.

o DatabaseValue: the current database value of this column on the server’s

database.

Handling Locking of Row before Update
LANSA Open for .NET runtime automatically creates a logical lock for every row that it is about to update to
avoid simultaneous update by different parties. The lock is applied before change-conflict detection takes place
to guarantee the integrity of the change-conflict detection process. By default, the lock name will be the name
of the LANSA table, and the identifiers will be either the Relative Record Number (RRN) or the primary key
values.
However, your .NET application might not be the only application that has the ability to update records. Legacy
applications (such as LANSA RDML applications) might have already been in operation, and they most likely
would have their own locking mechanism. In this case, the locking routine in your .NET application will have to
work in the same way as the existing LANSA applications.
To provide your own locking routine, we need to create two event handlers and attach them to these 2 static
events:

e DataContext.Events.LockObjectForUpdate

e DataContext.Events.UnlockObjectAfterUpdate

38
As an example, assume that we have a logical lock defined in our model called Employee. Our locking
routine will look like the code below. Note that it is very important to assign the args.Successful property with
true or false. If you don't assign this property, LANSA Open for .NET runtime will assume that you do not

have your own routine and it will execute its own standard locking routine.

private void Events_lockObjectForUpdate(object sender, LockObjectEventArgs args)

{
ifT (args.-Object is Employee)

{
Employee employee = (Employee)args.Object;
try
{
context.LogicallLocks.Employee.Lock(employee.EmployeeNo);
args.Successful = true;
3
catch (ObjectAlreadylLockedException)
{
args.Successful = false;
}
3

Serializing a Context
Serializing a context means generating a string representation of the context. Some practical use of context
serialization:

e To enable a context to be persisted on any medium. For example, web applications have to persist
the context somewhere in-between requests since they are stateless in nature. Another application is
to provide offline data entry support (ability to enter data when the application is not connected to a
server).

e To transport a context easily to another computer. For example, in an architecture where a client
application does not talk directly with a LANSA server, but it talks with an intermediary (application
server), which in turns talk with the LANSA server (client > app-server > LANSA). In such
architecture, the context will need to be transported back and forth between the client and app-

server.

Serialization

// Retrieve a person
Person person = context.Persons.Retrieveltem(*'A1001");

// Change the salary
person.Salary += 10000;

// Use object reference store to to keep a reference to the person data object,
// otherwise we will lose it after we deserialize the context back.
context.ObjectReferenceStore.Add(person);

39

// Serialize the context.

// Notice that we have not submitted the changes back to the server.
// We will do that later after we deserialize the context

// to illustrate that context serialization fully preserves the

// context"s state.

string serializedContext = context.Serialize();

Deserialization

// Get the stored string representation (serialized context).

string serializedContext = .

// Reconstruct the context from the string representation of it.

DataContext context = DataContext.CreateFromSerialized(serializedContext);

// Restore our reference to the person data object.
Person person = (Person)context.ObjectReferenceStore[0];

// We might display the values in the person object
// to the user e.g. on a data entry screen.
// ...

// Submit changes back to the database.
// This will include the change made to the salary field before serialization/deserialization.
context.SubmitChanges();

Note the use of the object reference store to maintain the reference to our Person data object. Right
before we serialize the context, we add the reference to our Person data object to the context’s object
reference store. When the context is serialized, it will also serialize the reference to our Person object. When
we deserialize the context back, we can get back the reference to the Person object by retrieving it from the

object reference store.

Serializing Data Objects in a Context

We can also serialize some data objects instead of the whole context, which will generate the string
representation of those data objects. When deserialized, the data objects can be attached to any existing

context.

Serialization

// Retrieve a person
Person person = context.Persons.Retrieveltem("*A1001");

string serializedPerson = context.Serialize(person);

Deserialization

// Get the stored string representation of the Person data object.

40

string serializedPerson = . . _;

// Reconstruct the Person from the string representation of it

// The resulting Person data object will be attached to the context
// that performs the deserialization.

Person person = context.DeserializeObject(serializedPerson);

You can also serialize a collection of data objects as illustrated below:

// Retrieve all persons
Person[] personList = context.Persons.RetrievelList();

string serializedList = context.Serialize(personList);

Turning On LANSA Connection Pooling

When connection pooling is turned on, LANSA Open for .NET will run a pool of connections that are kept open
and ready for use when a request is made. The purpose is to avoid having to establish a new physical
connection with the LANSA server every time a request comes in (establishing a new connection is a costly
operation).

Connection pooling is normally not required for desktop (client) applications, however it generally should be
enabled for web applications as web applications are stateless (which means that they are required to open a
new connection at the beginning of each request and close it at the end of the request). As mentioned earlier
opening a new physical connection takes time. If pooling is not enabled, the webserver response to the

browser might be delayed while it is waiting for the connection to the LANSA server being established.

The class that controls all aspects of the connection pooling is LOpen.EntityModel.ConnectionPool.

To enable the pooling, set the Enabled property to true.
ConnectionPool .Enabled = true;

Below is a list of the properties that control the behaviour of the connection pooling.

Property Name Description

MaxPoolSize The maximum number of connections that the pool can have.

This is to ensure that the web application does not open too many

connections to the LANSA server.

MinPoolSize The minimum number of connections that should be maintained in the

pool.

This is to ensure that response time for most web requests will be

consistent.

41

InactiveConnectionTimeout Indicates how long (in seconds) an unused connection should be
maintained in the pool before it can be closed and removed from the
pool (assuming that the number of connections in the pool is more than

the MinPoolSize).

AcquireConnectionTimeout Indicates how long (in seconds) the application should wait when no
connection is available in the pool (and the number of connections in

the pool has reached MaxPoolSize).

When writing ASP.NET applications, the appropriate place to put the code that configures the connection

pooling behaviour is the Application Start event in the Global.asax file as illustrated by the example below:

void Application_Start(object sender, EventArgs e)

// Enable the connection pooling
ConnectionPool .Enabled = true;

// Setup the connection pooling behaviour

ConnectionPool .MaxWaitForConnection = 30; // 30 seconds
ConnectionPool .MaxPoolSize = 10;

ConnectionPool .MinPoolSize = 5;
ConnectionPool . InactiveConnectionTimeout = 600; // 10 minutes

DataContext Serialisation & Deserialisation

Serialising a DataContext generates a string representation of the current state of the DataContext. The current
state of a DataContext includes table rows that have been retrieved from the database and their state (that is
which column values have been modified or which rows have been deleted).

This string representation can then be deserialised back to a DataContext object.

Why do we need to be able to serialise a DataContext into a string?

There are times when it is not feasible or possible to continuously keep the DataContext in memory as an
object. For example, when we are developing an ASP.NET application, so that the DataContext survives
between the stateless web requests, we need to save the DataContext somewhere between one request and
the next.

We might prefer to keep the DataContext in the “view state” as opposed to using the in-memory Session
object. Or we might want to store the DataContext in an SQL server table. If we choose to store the
DataContext in the “view state” or as a value in an SQL server table, we need to serialize the DataContext first
to its string representation, store it in the “view state” or the table, then deserialize it back to the DataContext
object on the next request.

Offline Operation

DataContext serialisation can also be useful when our application supports offline data entry. For example, a
contractor working on a site might not have online connection to the LANSA server. In this case, he/she will
need to enter the data offline and later reconcile the new data with the database on the LANSA server. In this
case, the new records will be created and stored in the DataContext. The DataContext will then be serialized
into a string and stored locally in the contractor’'s notebook harddrive. The next time the contractor connects

the application to the LANSA server, it will simply deserialize the DataContext containing the new records and

simply call a SubmitChanges on the DataContext to reconcile all the new records with the database on the
LANSA server.

Serialising a DataContext

string contextAsString = context.Serialize();

Deserialising a DataContext

DataContext context = DataContext.CreateFromSerialized(contextAsString);

Or if we want to use a specific instance of DataContext:

// Somewhere we have the DataContext instantiated

context = new DataContext(true);

// Now we want to use the same instance when deserialising
// instead of creating a new one

context.Deserialize(contextAsString);

Data Model Version Number

Our LANSA data model has a version number that we can set. The figure below shows where we can set this

version number (it's a property of the root node of our data model document).

Model2.lcm | Formé.cs | Start Page | RV Froperties
- LANSA Model Document Schema v
Bz

* . =z | A

~[E Logical Tables @2 —

Ef Functions Context Class Name DataContext
ﬂ- Multilingual Texts Default Field Resource Tvpe Embedded

3]

Lanquages
') Logical Locks

=511 1BMi Objects

Default Mulkilingual Variable Resource Type Embedded
IModel Yersion 1.0.0.0

Marmespace

*.:':'1 Connect ko a server and refresh vour objecks

-0 X

| File | L.| Calurnin | Project

Model ¥ersion

The version number of this data model, ¥ou are recommended ko
change your version number whenever vou deploy an updated versio...

4

42

43

If we are serialising our DataContext and we store the string representation for an extended period of time (as

in the case with the offline data entry capability), we need to make sure that when we update our LANSA data

model we change the version number, so that the L/Open.NET runtime can tell if a string representation of a

DataContext is compatible with the DataContext that tries to deserialise it. If you do not change your data

model version after making a change to it, L/Open.NET runtime will have no way of knowing that your data

model has changed. If you then deserialise a string that was serialised with the previous version of the data

model, the data in the DataContext will be corrupted. So it is very important that we change our data model

version number when we change anything in our data model.

Another Use of DataContext Serialisation

DataContext serialisation can also be useful when the client application communicates with an application

server (using remoting or web services) instead of directly to a LANSA server. The application server

communicates directly with the LANSA server. This architecture gives the client application freedom in regards

to the way data is transported between the client and the application server. The client can now use web

services or .NET remoting to transport data.

In this sort of architecture, we can see where the DataContext serialisation comes in.

1.

10.

The client application will have an offline DataContext (a DataContext that is not connected to a LANSA
server).

When the user requests a record to be retrieved, the client then passes the request to the application
server.

The application server uses the online DataContext (connected to a LANSA server) to fetch the
requested data into its DataContext.

The application server then serialises the DataContext and then transmits it to the client application.
The client application receives it and deserialises it back to a DataContext object.

The user can then modify the value of some fields and the changes will automatically be tracked by the
DataContext.

When the user requests the changes to be saved, the client application serializes the DataContext &
send it to the application server.

The application server receives it, deserialises it back to a DataContext object.

The application server then calls SubmitChanges on the DataContext to get the LANSA server to
update its database with the changes.

An error might occur in the application server and an ApplyChangesException exception might be
raised. Since this needs to be passed back to the client application, the application server serialises this

exception, transmit to the client who then deserialises it back to an ApplyChangesException object.

Serialising ApplyChangesException Object

catch (ApplyChangesException ex)

string asString = context.Serialize(ex);

44
Deserialising ApplyChangesException Object

ApplyChangesException ex = context.DeserializeApplyChangesException(asString);

DataValidationResult object can also be serialised and deserialised in a similar manner as above.

Context’'s Embedded Dataset

Each instance of a context contains an embedded dataset, which is a container where we can put various data
objects in. The reasons why we want to put our data objects in the context’s embedded dataset are:
e All data objects stored in the dataset will be preserved when the context is serialized.
e The data objects stored in the dataset can be used as a data source for data retrieval. This means that
when we do say a RetrieveList operation for a Person table, the data can come either from:
1. The database on the server, or

2. The objects stored in the context's embedded dataset.

To indicate to a context that it should retrieve from its dataset instead of the server, set the

Options.DataSource property to Dataset (by default it is set to Database).

Since the context’s dataset can be used as a data source, one of its practical applications would be for data
caching or to support offline data entry. For example, assume that we know that department list in our
company does not change often so we can safely cache it (in the case of offline data entry capability, it is a
necessity to have a local cache of the department list).

1. The first time, the application connects the context to the server (online).
The application retrieves the list of departments off the server.
It adds the retrieved department data objects to the context’s dataset.
It disconnect the context (offline).

It now sets the DataSource property of the context’s Options to Dataset.

o gk~ w D

It then serializes the context and store the resulting string in the computer’s local harddrive.

// First time, retrieve the department list off the server
context.Connect('username', '‘password™);

Department[] departments = context.Departments.RetrievelList();
context.Disconnect();

// Add the deparments to the context’s dataset
context.DataSet.Add(departments);

// Serialize the context
context.Options.DataSource = DataSourceType.Dataset;

string serialized = context.Serialize();

// Save the serialized string somewhere in the local computer.
System. 10.File.WriteAllText("'path", serialized);

7. The next time the application is run, the context will be deserialized — the dataset will contain the
department list.
8. When the application calls the RetrieveList method of the Department table, the existing

departments in the context’'s dataset will be returned.

45

// Deserialize the context

// Get the serialized string stored in the local computer

string serialized = System.l0.File.ReadAllText('path');

DataContext context = DataContext.CreateFromSerialized(serialized);

// Context remains offline.

// Before we serialized the context we have set the "DataSource®

// property to "Dataset” (the serialization process remembers that setting).
// The RetrieveList below will retrieve the existing department objects

// stored in the dataset.

Department[] departments = context.Departments.RetrievelList();

Creating a Server Function Definition in the Data Model

e We start by dragging a function from the LANSA Repository Explorer and dropping it on our data model

document.
ANSA Repository Explorer Model2.lcm | Context.cs | Formé
~{af OPTIOM (Action Bar) || =] LANSA Model
:'f QUTSUEF (RAMP output only subfile) #-E8 Tables
¥ PABFLTL (DWFILTI) --[EH Logical Tables
~{F PAETEST (Test exchange) #-1.F Functions
:'f PHOME (Employes Business Phone Mumb - A Multilingual Texts
:'f PM_5vSE (DWFILT1) -2 Languages
:'f PH_WEBD (Cuskam Web IIP For User Sigr -1 Logical Locks
:'f PMFILTS (web Filker For Organizations) Qj IBMi Objects

:'f PHINGQRE (BrowsefMaintain Employes an
:'f PHNOPTIO (Present a number of options)
"~Z? PMSUBFL (Present a broweselist of opkion:
L PNT1105 (Example 1 with values <1)
L PNT1106 (Example 2 with values =1)
L PNT1107 (Example 3 with values <1)

:'f PHUDOL {Custom Web IIP for User Sigr
:'f PSLINC (Install Demonstration Daka)
-mZ?PSUNIﬂndeedemndmalj

A PSITNTY frrRate ROML % Samnle NAtAT

e Local Fields are fields used by the function that are defined locally (in the function).
Primitive parameters are exchanged fields.

List Parameters are working lists.

/ﬁudelz.lcm* rCDntext.cs]/FcurmEu.cs]fStart Page]

= LAMSA Model
- Tables

Logical Tables

EID" Functions

BRFg CHONE:
. '¥ Local Fields
@ Primitive Parameters

: o List Parameters

ﬁ,_ Multilingual Texts

- | Languages

#-5 Logical Locks

=-LJ] IBMi Dbjects

If the function uses fields that are defined locally in the function (not in the LANSA Repository), we

should define those fields in our model.

v Model
ez
ncal Tables
wctions
PHOME

kL ocal Fields

[olution 't
E| E Empl
=d| Pt

B R

&% Primitive Pan) Add New Local Field
Lizt Paramet

Itilingual Texts

1guages

(i) Drag a field either from the Repository Explorer or another local field to create a new local field based on that other field

ncal Locks
{i Dbjects

If we do a mouse right-click on the Local Fields node, we can see that there are 2 ways to define a

local field:

1. Define a completely new field.

i) Dragacolumn of a table in the Repository Explorer or in the model to create a new local field based on that column's Field

46

2. Define a new field that is based on another field (reference field). There are 3 ways we can do

this:

a. Drag a global field from the LANSA Repository Explorer and drop on the Local Fields

node.

47

=B Global Fields

----- # @@RRMNC (Relative record nurmber)

----- & @@DUPID (Field update | access identifie
----- * AB$OPT (Ackion Bar Opkion)

----- ® ADDRESS1 (Street Mo and Mame)

----- * ADDRESSZ (Suburb or Town)

----- ¥ ADDRESSS (State and Country)

----- * BLAME (Blank | blanks variable)

----- * BLAMKS (Blank [blanks wariable)

----- * COMMENT (Camment on skills acquired)
----- ® COMPARY (Current companyy name)

----- ¥ CPFREL {Current O5/400 or 5)38 CPF re
----- ¥ CPUTYPE (CPU Twpe (45400 ar 53310

----- ® CURLOCEFM (Marme of field cursor locate

b. Drag a column of a table from the LANSA Repository Explorer or from a table in our
model. When we drop the column on the Local Fields node, the field that the column
is based on will be used as the base field for the new field.

Data Model

-] LANSA Model
=8 Tables

=] Department

. 4% Columns

Employee

Persan

Section

TSTABLET

H TSTABLEZ

Logical Tables

E—]--D Functions

=-2F PHONE

1'% Local Fields
@ Primitive Parameters
[List Parameters
[+ Multiingual Texts

Repository Explorer

B[] localhost:4546 - DEM - ENG

DC@FZ3S (Function Definitions)

Ci@F26 (System Variables)

C@FAO (Partition Languages)

C@WOE (L4'W'3 - Image Data)

W09 (L4W3 - Web Process Informat

C@W 10 (L4W3 - Banner Header)

C@W 11 (L4W'3 - Banner Details)

@12 (L4W'3 - LAMSA system tables)

it 14 {Web Event Links)

C@K01 (XML Page Header)

C@R0Z (XML Page Detail)

@03 (XML Component Registry)

C@xad (XML Application)

C@RAP (ML Application Property)

C@XPR (XML Property)

@Y (XML Property Yalug)

EPTAE (Department code table)

-4 ¥ Columns

! DEPTMENT (Department Cods)

¥ DEPTDESC {Department Descripk

Logical Tables

- Relations

wDOCS (Shore documents command har

FPDOC (Dacuments file)

c. Drag another local field to create a new field based on that local field and drop on the

Local Fields node.

48

L——_ID? Functions
=1 PHONE
El * Local Fields

~.a2» Primitive Parameters
o Lizt Parameters

H- 4% Multilingual Texts

H-i | Languages

t-/71 Logical Locks

/-1 IBMi Objects

|y O g B ey B e |

e To add a primitive parameters, there are three ways of doing that:
o Drag one of the fields under the Local Fields node and drop it on the Primitive Parameters
node.
o Drag a global field from the LANSA Repository Explorer and drop it on the Primitive
Parameters node.
0 Drag a column of a table in the LANSA Repository Explorer or a column of a table in our model
document.

We must indicate if a parameter is an input or output parameter.

Properties

PHONE.ACTION Function Parameter -

e £V
{Local Blames ACTION
Direction In
Field ACTION

{Local Name)

The programmatic name of this object,
Yau will use this name when referring ...

e Adding a list parameter should be straightforward. The list's columns are the fields contained within the

working list. List’s columns can be added in the same way as primitive parameters.

Invoking a Server Function
Assuming that we have a function called ADD on the server and we have created its definition on our data
model.

EIB" Functions
E-f Add
R ocal Fields

E@ Primitive Parameters

g Result

Valuel and Value?2 are input parameters, Result is an output parameter.

49

// Create an "invoke info" object.

// An "invoke info" object is where you put all the parameters

// you need to pass when calling the server function.

// After the function is executed, any values returned by the server
// are available in the "invoke info" object as well.

AddInvokelnfo invokelnfo = context.Add.Createlnvokelnfo();
invokelnfo.In_Valuel = 5;

invokelnfo.In_Value2 = 10;

// Invoke the function, passing the parameters
context.Add. Invoke(invokelnfo);

// Get the result returned by the function
long result = invokelnfo.Out.Result;

Invoking a Server Function with List Parameters

=-1.F Sum
-\ * Local Fields
-2 Primitive Parameters
- L@ Result
=% List Parameters
=1 Values

B Columns |

Ll M YWalue

// Create an "invoke info" object.

// An "invoke info" object is where you put all the parameters

// you need to pass when calling the server function.

// After the function is executed, any values returned by the server
// are available in the "invoke info" object as well.

Sumlnvokelnfo invokelnfo = context.Sum.Createlnvokelnfo();

// Add values to sum to the list
Sum_Valuesltem iteml = new Sum_Valuesltem();
iteml_Value = 10;
invokelnfo.Lists.Values.Add(iteml);

Sum_Valuesltem item2 = new Sum_Valuesltem();
item2.Value = 10;
invokelnfo.Lists.Values.Add(item2);

// Invoke the function
context.Sum. Invoke(invokelnfo);

// Get the result
long result = invokelnfo.Out.Result;

Using IBM i Spool File Collections

50

=10 IBMi Dbjects
E||‘;‘| Spool File Collections
i b=y Entiby3

E. #dd Spool File Collection (User)
@ &dd Spool File Collection {Queue)

: (=1 Entiy3
E@ 05 Commands
fom-LE Entig

A spool file collection represents a list of spool files on an IBM i system. There are 2 types of spool file
collections:
e Spool file collections for users

e Spool file collections for queues

As an example, let’s create a spool file collection for a user called DCXUSER.

Properties
DCEUSER User's Sponl Files -
(R .
®ZZ El
(Local Mame) Dy JSER.
Iser Mame DiZxSER.

After we save the model, we can access the spool file collection called DCXUSER through
context._SpoolFileCollections.

To iterate through the spool files in this collection:

foreach (SpoolFile spoolFile in context.SpoolFileCollections.DCXUSER)
{

Console.WriteLine(spoolFile.JobName);

We can also reference the spool files by index.

SpoolFile firstSpoolFile = context.SpoolFileCollections.DCXUSER[O];

// Get the content of the spool file
String content = firstSpoolFile.Content;

Using IBM i Operating System Command
Let’s define a command called CopyFile that has 2 parameters:
e Path
e TargetDir
This command copies a file as specified in the Path parameter to the directory specified in TargetDir.

EI@ 05 Commands
N RIE o il

This is how the command looks like:

Properties

CopyFile ©5 Command -

== A

w=" [£ \lr

(Local Mame) CopyFile

Command CPY OB @Path) TODIR(@TargetDir)

Note that parameters are indicated by prefixing the parameter name with the ‘@’ character.

To execute the command:

51

context.0SCommands.CopyFile.Execute("/test/filel._ txt", "/test2");

	What is LANSA Open for .NET 3.8?
	Why LANSA Open for .NET 3.8?
	What Will a Simple C# Code to Retrieve and Update an Employee Record Look Like?
	How is Coding Made Easier with LANSA Open for .NET 3.8?
	What Doesn’t LANSA Open for .NET 3.8 Do?
	Runtime Requirements
	Supported Visual Studio Versions
	Installing LANSA Open for .NET
	Components of LANSA Open for .NET
	Is Visual Studio Express Supported?
	A Glimpse of LANSA Repository Explorer and Data Model Editor
	Why Do We Have the Standalone Version of the Data Model Editor?
	What Does the Visual Studio Integrated Version Do That the Standalone Version Does Not?
	How Do I Start the LANSA Repository Explorer in Visual Studio?
	LANSA Repository Explorer
	How Do I Create a New LANSA Data Model File In My Project?
	Can We Add A Data Model (.lcm) to an ASP.NET Web Site?
	Can I Add a Data Model File to Any Project (Languages)?
	What If I’m Not Using C# or VB.NET?
	What Do I Do with the Data Model and How Can I Reference It from My Code?
	Enabling Commitment Control on the Server
	Synchronising Objects on the Data Model with the LANSA Repository
	What LANSA Open for .NET Assemblies I need to include when deploying my application?
	Establishing a Connection with a LANSA Server
	Creating a Master Context
	Creating a Child Context
	Retrieving Records
	Submitting Changes Back to the Server
	Inserting a New Record to a Table
	Populating Default values of Fields in a Data Object
	Deleting a Record
	Checking the State of a Data Object
	Submitting Changes to the Server, Catch and Display Messages when Errors Occur
	Submitting Changes to the Server & Resolving Update-conflict
	Getting the Server to Validate the Changes Made to Records Without Actually Committing the Changes
	Real & Virtual Table Columns
	Accessing a Column’s Multilingual Texts (Labels, Headings)
	Deleting Multiple Records
	Updating Multiple Records
	Beginning & Ending a Transaction
	How Do the LANSA Field Types Map to .NET Runtime Types?
	Data Context Advanced Options
	How to Assign a Database NULL Value to a Column in a Record?
	Accessing Original Values in a Data Object
	Getting Error Information From ApplyChangesException
	Handling Locking of Row before Update
	Serializing a Context
	Serializing Data Objects in a Context
	Turning On LANSA Connection Pooling
	DataContext Serialisation & Deserialisation
	Context’s Embedded Dataset
	Creating a Server Function Definition in the Data Model
	Invoking a Server Function
	Invoking a Server Function with List Parameters
	Using IBM i Spool File Collections
	Using IBM i Operating System Command

